Revisiting matrix product on heterogeneous platforms

Jean-François Pineau, Yves Robert, Frédéric Vivien Jack Dongarra and Zhiao Shi

> MAO January 25, 2007

A (1) < (1) < (1) </p>

Outline

- 2 Theoretical study
 - The simplest problem
 - Limited memory

3 Parallel algorithms

- Homogeneous platforms
- Heterogeneous platforms

4 Experiments

Framework Theoretical study

Parallel algorithms Experiments Conclusion

Outline

- Theoretical study
 - The simplest problem
 - Limited memory

3 Parallel algorithms

- Homogeneous platforms
- Heterogeneous platforms
- 4 Experiments
- 5 Conclusion

Why revisit matrix-product?

• A fundamental computational kernel

- Well-understood for *homogeneous 2D-arrays of processors*
 - Cannon algorithm
 - ScaLAPACK outer product algorithm
- Communications can no longer be neglected

<日本

<b

Why revisit matrix-product?

- A fundamental computational kernel
- Well-understood for *homogeneous 2D-arrays of processors*
 - Cannon algorithm
 - ScaLAPACK outer product algorithm
- Communications can no longer be neglected

Why revisit matrix-product?

- A fundamental computational kernel
- Well-understood for *homogeneous 2D-arrays of processors*
 - Cannon algorithm
 - ScaLAPACK outer product algorithm
- Communications can no longer be neglected

Why revisit matrix-product?

- A fundamental computational kernel
- Well-understood for homogeneous 2D-arrays of processors
 - Cannon algorithm
 - ScaLAPACK outer product algorithm
- Communications can no longer be neglected

We target

- heterogeneous clusters
- star-shaped platform
- Iimited memory

Why revisit matrix-product?

- A fundamental computational kernel
- Well-understood for *homogeneous 2D-arrays of processors*
 - Cannon algorithm
 - ScaLAPACK outer product algorithm
- Communications can no longer be neglected

We target

- heterogeneous clusters
- star-shaped platform
- Iimited memory

▲□ ► ▲ □ ► ▲

Why revisit matrix-product?

- A fundamental computational kernel
- Well-understood for *homogeneous 2D-arrays of processors*
 - Cannon algorithm
 - ScaLAPACK outer product algorithm
- Communications can no longer be neglected

We target

- heterogeneous clusters
- star-shaped platform
- limited memory

Image: A = A

• Input: Three matrices \mathcal{A} , \mathcal{B} and \mathcal{C} ,

- Goal: Compute $C = C + A \times B$
- Tools: Very efficient matrix multiplication algorithms on one processor
- Idea: Manipulate blocks of size $q \times q$

< ロ > < 同 > < 三 > < 三

- Input: Three matrices \mathcal{A} , \mathcal{B} and \mathcal{C} ,
- Goal: Compute $C = C + A \times B$
- Tools: Very efficient matrix multiplication algorithms on one processor
- Idea: Manipulate blocks of size $q \times q$

< □ > < 同 > < 三 >

- Input: Three matrices \mathcal{A} , \mathcal{B} and \mathcal{C} ,
- Goal: Compute $C = C + A \times B$
- Tools: Very efficient matrix multiplication algorithms on one processor
- Idea: Manipulate blocks of size $q \times q$

< ロ > < 同 > < 三 > < 三

- Input: Three matrices \mathcal{A} , \mathcal{B} and \mathcal{C} ,
- Goal: Compute $C = C + A \times B$
- Tools: Very efficient matrix multiplication algorithms on one processor
- Idea: Manipulate blocks of size $q \times q$

・ロト ・ 同ト ・ ヨト ・ ヨ

How to split the matrices?

< 4 ₽ > < Ξ

æ

Formally

- \mathcal{A} is of size $n_{\mathcal{A}} \times n_{\mathcal{AB}}$:
 - split \mathcal{A} into $r = n_{\mathcal{A}}/q$ horizontal stripes \mathcal{A}_i
 - split stripe \mathcal{A}_i into $t = n_{\mathcal{AB}}/q$ square q imes q blocks \mathcal{A}_{ik}
- \mathcal{B} is of size $n_{\mathcal{AB}} \times n_{\mathcal{B}}$:
 - split ${\mathcal B}$ into $s=n_{{\mathcal B}}/q$ vertical stripes ${\mathcal B}_j$
 - split stripe \mathcal{B}_j into t square q imes q blocks \mathcal{B}_{kj}
- C is of size $n_A \times n_B$:
 - split ${\mathcal C}$ into r imes s square q imes q blocks ${\mathcal C}_{ij}$
- All stripes and blocks have same size

Formally

- \mathcal{A} is of size $n_{\mathcal{A}} \times n_{\mathcal{AB}}$:
 - split \mathcal{A} into $r = n_{\mathcal{A}}/q$ horizontal stripes \mathcal{A}_i
 - split stripe \mathcal{A}_i into $t = n_{\mathcal{AB}}/q$ square q imes q blocks \mathcal{A}_{ik}
- \mathcal{B} is of size $n_{\mathcal{AB}} \times n_{\mathcal{B}}$:
 - split ${\mathcal B}$ into $s=n_{{\mathcal B}}/q$ vertical stripes ${\mathcal B}_j$
 - split stripe \mathcal{B}_j into t square q imes q blocks \mathcal{B}_{kj}
- C is of size $n_A \times n_B$:
 - split ${\mathcal C}$ into r imes s square q imes q blocks ${\mathcal C}_{ij}$
- All stripes and blocks have same size

- A 同 ト A 三 ト A 三

Formally

- \mathcal{A} is of size $n_{\mathcal{A}} \times n_{\mathcal{AB}}$:
 - split \mathcal{A} into $r = n_{\mathcal{A}}/q$ horizontal stripes \mathcal{A}_i
 - split stripe \mathcal{A}_i into $t = n_{\mathcal{AB}}/q$ square q imes q blocks \mathcal{A}_{ik}
- \mathcal{B} is of size $n_{\mathcal{AB}} \times n_{\mathcal{B}}$:
 - split ${\mathcal B}$ into $s=n_{{\mathcal B}}/q$ vertical stripes ${\mathcal B}_j$
 - split stripe \mathcal{B}_j into t square q imes q blocks \mathcal{B}_{kj}
- C is of size $n_A \times n_B$:
 - split $\mathcal C$ into r imes s square q imes q blocks $\mathcal C_{ij}$
- All stripes and blocks have same size

Formally

- \mathcal{A} is of size $n_{\mathcal{A}} \times n_{\mathcal{AB}}$:
 - split \mathcal{A} into $r = n_{\mathcal{A}}/q$ horizontal stripes \mathcal{A}_i
 - split stripe \mathcal{A}_i into $t = n_{\mathcal{AB}}/q$ square q imes q blocks \mathcal{A}_{ik}
- \mathcal{B} is of size $n_{\mathcal{AB}} \times n_{\mathcal{B}}$:
 - split ${\mathcal B}$ into $s=n_{{\mathcal B}}/q$ vertical stripes ${\mathcal B}_j$
 - split stripe \mathcal{B}_j into t square q imes q blocks \mathcal{B}_{kj}
- C is of size $n_A \times n_B$:
 - split $\mathcal C$ into r imes s square q imes q blocks $\mathcal C_{ij}$
- All stripes and blocks have same size

Platform model

Slaves

Jean-François Pineau Revisiting matrix product on heterogeneous platforms

(日)

æ

Platform model (Formally)

• Master M and p workers P_i

- *P_i* needs *X*.*w_i* time-units to execute a task of size *X*
- M needs X.c_i time-units to send/receive a task of size X to/from P_i
- Master has no processing capability
- Enforce *one-port* model:
 - Master involved in a single communication, either send or receive
 - Worker can overlap communication and computation of independent tasks
- Memory limitation: P_i can only store m_i blocks

• □ ▶ • □ ▶ • □ ▶ • •

Platform model (Formally)

- Master *M* and *p* workers *P_i*
- *P_i* needs *X*.*w_i* time-units to execute a task of size *X*
- M needs X.c_i time-units to send/receive a task of size X to/from P_i
- Master has no processing capability
- Enforce *one-port* model:
 - Master involved in a single communication, either send or receive
 - Worker can overlap communication and computation of independent tasks
- Memory limitation: P_i can only store m_i blocks

• □ ▶ • □ ▶ • □ ▶ • •

Platform model (Formally)

- Master *M* and *p* workers *P_i*
- P_i needs X.w_i time-units to execute a task of size X
- *M* needs *X*.*c_i* time-units to send/receive a task of size *X* to/from *P_i*
- Master has no processing capability
- Enforce *one-port* model:
 - Master involved in a single communication, either send or receive
 - Worker can overlap communication and computation of independent tasks
- Memory limitation: P_i can only store m_i blocks

・ロト ・ 同ト ・ ヨト ・ ヨ

Platform model (Formally)

- Master *M* and *p* workers *P_i*
- P_i needs X.w_i time-units to execute a task of size X
- *M* needs *X*.*c_i* time-units to send/receive a task of size *X* to/from *P_i*
- Master has no processing capability
- Enforce *one-port* model:
 - Master involved in a single communication, either send or receive
 - Worker can overlap communication and computation of independent tasks
- Memory limitation: P_i can only store m_i blocks

・ロト ・同ト ・ヨト ・ヨ

Platform model (Formally)

- Master *M* and *p* workers *P_i*
- *P_i* needs *X*.*w_i* time-units to execute a task of size *X*
- *M* needs *X*.*c_i* time-units to send/receive a task of size *X* to/from *P_i*
- Master has no processing capability
- Enforce *one-port* model:
 - Master involved in a single communication, either send or receive
 - Worker can overlap communication and computation of independent tasks
- Memory limitation: P_i can only store m_i blocks

・ロト ・ 同ト ・ ヨト ・ ヨ

Platform model (Formally)

- Master *M* and *p* workers *P_i*
- *P_i* needs *X*.*w_i* time-units to execute a task of size *X*
- *M* needs *X*.*c_i* time-units to send/receive a task of size *X* to/from *P_i*
- Master has no processing capability
- Enforce *one-port* model:
 - Master involved in a single communication, either send or receive
 - Worker can overlap communication and computation of independent tasks
- Memory limitation: P_i can only store m_i blocks

・ロト ・ 同ト ・ ヨト ・ ヨト

Platform model (Formally)

- Master *M* and *p* workers *P_i*
- *P_i* needs *X*.*w_i* time-units to execute a task of size *X*
- *M* needs *X*.*c_i* time-units to send/receive a task of size *X* to/from *P_i*
- Master has no processing capability
- Enforce *one-port* model:
 - Master involved in a single communication, either send or receive
 - Worker can overlap communication and computation of independent tasks
- Memory limitation: P_i can only store m_i blocks

・ロト ・ 同ト ・ ヨト ・ ヨト

Platform model (Formally)

- Master *M* and *p* workers *P_i*
- *P_i* needs *X*.*w_i* time-units to execute a task of size *X*
- *M* needs *X*.*c_i* time-units to send/receive a task of size *X* to/from *P_i*
- Master has no processing capability
- Enforce *one-port* model:
 - Master involved in a single communication, either send or receive
 - Worker can overlap communication and computation of independent tasks
- Memory limitation: P_i can only store m_i blocks

・ロト ・ 同ト ・ ヨト ・ ヨ

The simplest problem Limited memory

Outline

2 Theoretical study

- The simplest problem
- Limited memory

3 Parallel algorithms

- Homogeneous platforms
- Heterogeneous platforms

4 Experiments

5 Conclusion

< 同 ▶

The simplest problem Limited memory

Outline

5 Conclusion

< 同 ▶

The simplest problem Limited memory

What is the simplest problem?

Problem

One worker

• Stripes instead of blocks, no return result

No memory limitation

Scheduling

• In which order send the files?

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

What is the simplest problem?

Problem

- One worker
- Stripes instead of blocks, no return result
- No memory limitation

Scheduling

• In which order send the files?

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

What is the simplest problem?

Problem

- One worker
- Stripes instead of blocks, no return result
- No memory limitation

Scheduling

• In which order send the files?

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

What is the simplest problem?

Problem

- One worker
- Stripes instead of blocks, no return result
- No memory limitation

Scheduling

• In which order send the files?

< □ > < 同 > < 三 >

The simplest problem Limited memory

What is remaining?

Parameters

- Platform:
 - c : communication time of a stripe
 - w : processing time of a stripe
- Application: *r* and *s* (number of stripes)

Objective

• Design optimal algorithm for makespan minimization

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

What is remaining?

Parameters

- Platform:
 - c : communication time of a stripe
 - w : processing time of a stripe
- Application: r and s (number of stripes)

Objective

• Design optimal algorithm for makespan minimization

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

What is remaining?

Parameters

- Platform:
 - c : communication time of a stripe
 - w : processing time of a stripe
- Application: r and s (number of stripes)

Objective

• Design optimal algorithm for makespan minimization
The simplest problem Limited memory

Dependence graph: files and tasks

Suggests alternating sends of ${\mathcal A}$ and ${\mathcal B}$

(日)

ъ

The simplest problem Limited memory

Alternating greedy

Alternating greedy

- Master sends stripes as soon as possible
- \bullet Alternates a stripe of type ${\cal A}$ and a stripe of type ${\cal B}$

Theorem

With a single worker, the alternating greedy algorithm is optimal.

(日) (同) (三) (三)

The simplest problem Limited memory

Alternating greedy

Alternating greedy

- Master sends stripes as soon as possible
- \bullet Alternates a stripe of type ${\cal A}$ and a stripe of type ${\cal B}$

Theorem

With a single worker, the alternating greedy algorithm is optimal.

(日) (同) (三) (三)

The simplest problem Limited memory

What is the second simplest problem?

Problem

- Fully homogeneous platform (identical workers and communication links)
- Stripes instead of blocks, no return result
- No memory limitation

Scheduling

- How many workers to enroll?
- Which files sent to which workers, and in which order?

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

What is the second simplest problem?

Problem

- Fully homogeneous platform (identical workers and communication links)
- Stripes instead of blocks, no return result
- No memory limitation

Scheduling

- How many workers to enroll?
- Which files sent to which workers, and in which order?

The simplest problem Limited memory

What is remaining?

Parameters

- Platform:
 - p workers,
 - c : communication time of a stripe
 - w : processing time of a stripe
- Application: r and s (number of stripes)

Objective

- Makespan minimization
- Design optimal algorithm (includes resource selection)

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

What is remaining?

Parameters

- Platform:
 - p workers,
 - c : communication time of a stripe
 - w : processing time of a stripe
- Application: r and s (number of stripes)

Objective

- Makespan minimization
- Design optimal algorithm (includes resource selection)

The simplest problem Limited memory

Extend the Alternating greedy algorithm to several workers

Thrifty: a natural greedy algorithm

- Send enough tasks to first worker so that it is never idle
- Send tasks to second worker during available communication slots
- Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

- Min-min heuristic
- Start best new task on best processor

The simplest problem Limited memory

Extend the Alternating greedy algorithm to several workers

Thrifty: a natural greedy algorithm

- Send enough tasks to first worker so that it is never idle
- Send tasks to second worker during available communication slots
- Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

- Min-min heuristic
- Start best new task on best processor

The simplest problem Limited memory

Extend the Alternating greedy algorithm to several workers

Thrifty: a natural greedy algorithm

- Send enough tasks to first worker so that it is never idle
- Send tasks to second worker during available communication slots
- Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

- Min-min heuristic
- Start best new task on best processor

The simplest problem Limited memory

Extend the Alternating greedy algorithm to several workers

Thrifty: a natural greedy algorithm

- Send enough tasks to first worker so that it is never idle
- Send tasks to second worker during available communication slots
- Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

- Min-min heuristic
- Start best new task on best processor

The simplest problem Limited memory

Extend the Alternating greedy algorithm to several workers

Thrifty: a natural greedy algorithm

- Send enough tasks to first worker so that it is never idle
- Send tasks to second worker during available communication slots
- Enroll new worker only when all previous ones are not delayed

Min-min: another natural greedy algorithm

- Min-min heuristic
- Start best new task on best processor

The simplest problem Limited memory

Thrifty Optimal ?

p = 2, c = 4, w = 7, r = s = 3, Min-min wins

(日)

The simplest problem Limited memory

Min-Min Optimal ?

p = 2, c = 8, w = 9, r = 6, s = 3, Thrifty wins

< ロ > < 同 > < 回 > < 回 >

The simplest problem Limited memory

Outline

5 Conclusion

< 同 ▶

The simplest problem Limited memory

New problem

- Homogeneous platform
- Master sends blocks A_{ik} , B_{kj} , and C_{ij}
- Master retrieves final values of blocks C_{ij}
- Memory limitation: only *m* buffers available
 → at most *m* blocks simultaneously stored on work

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

New problem

- Homogeneous platform
- Master sends blocks \mathcal{A}_{ik} , \mathcal{B}_{kj} , and \mathcal{C}_{ij}
- Master retrieves final values of blocks C_{ij}
- Memory limitation: only *m* buffers available
 → at most *m* blocks simultaneously stored on worker

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

New problem

- Homogeneous platform
- Master sends blocks \mathcal{A}_{ik} , \mathcal{B}_{kj} , and \mathcal{C}_{ij}
- Master retrieves final values of blocks C_{ij}
- Memory limitation: only *m* buffers available
 → at most *m* blocks simultaneously stored on worker

(日) (同) (三) ()

The simplest problem Limited memory

New problem

- Homogeneous platform
- Master sends blocks \mathcal{A}_{ik} , \mathcal{B}_{kj} , and \mathcal{C}_{ij}
- Master retrieves final values of blocks C_{ij}
- Memory limitation: only *m* buffers available
 → at most *m* blocks simultaneously stored on worker

The simplest problem Limited memory

New problem

- Homogeneous platform
- Master sends blocks \mathcal{A}_{ik} , \mathcal{B}_{kj} , and \mathcal{C}_{ij}
- Master retrieves final values of blocks C_{ij}
- Memory limitation: only *m* buffers available
 - \rightarrow at most m blocks simultaneously stored on worker

Previous objective

• Minimizing the total execution time

The simplest problem Limited memory

New problem

- Homogeneous platform
- Master sends blocks \mathcal{A}_{ik} , \mathcal{B}_{kj} , and \mathcal{C}_{ij}
- Master retrieves final values of blocks C_{ij}
- Memory limitation: only *m* buffers available
 - \rightarrow at most *m* blocks simultaneously stored on worker

New objective

• Minimizing the total communication volume

The simplest problem Limited memory

New problem

- Homogeneous platform (Any parallel algorithm can be simulated on one single worker)
- Master sends blocks \mathcal{A}_{ik} , \mathcal{B}_{kj} , and \mathcal{C}_{ij}
- Master retrieves final values of blocks C_{ij}
- Memory limitation: only *m* buffers available
 - \rightarrow at most m blocks simultaneously stored on worker

New objective

• Minimizing the total communication volume

・ロト ・ 同ト ・ ヨト ・ ヨ

The simplest problem Limited memory

The maximum re-use algorithm

 \mathbf{m}

• Find largest μ such that $1 + \mu + \mu^2 \le m$

< □ > < 同 > < 三 >

The simplest problem Limited memory

The maximum re-use algorithm

 \mathbf{m}

• Find largest μ such that $1 + \mu + \mu^2 \leq m$

< □ > < 同 > < 三 >

- - E

The simplest problem Limited memory

The maximum re-use algorithm

• Store $\mu \times \mu$ blocks of $\mathcal C$ in memory

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

The maximum re-use algorithm

- For each k from 1 to t:
 - Send corresponding μ elements of the k^{th} row of ${\cal B}$

(日)

The simplest problem Limited memory

The maximum re-use algorithm

- For each k from 1 to t:
 - Sequentially send corresponding μ elements of the kth column of A. For each block of A, update μ elements of C

・ロト ・同ト ・ヨト ・ヨト

The simplest problem Limited memory

The maximum re-use algorithm

- For each k from 1 to t:
 - Sequentially send corresponding μ elements of the kth column of A. For each block of A, update μ elements of C

・ロト ・同ト ・ヨト ・ヨト

The simplest problem Limited memory

The maximum re-use algorithm

- For each k from 1 to t:
 - Sequentially send corresponding μ elements of the kth column of A. For each block of A, update μ elements of C

・ロト ・同ト ・ヨト ・ヨト

The simplest problem Limited memory

The maximum re-use algorithm

- For each k from 1 to t:
 - Sequentially send corresponding μ elements of the kth column of A. For each block of A, update μ elements of C

・ロト ・同ト ・ヨト ・ヨト

The simplest problem Limited memory

The maximum re-use algorithm

• Return results to master

(日)

The simplest problem Limited memory

Performance

- Need $2\mu^2$ communications to send/retrieve ${\cal C}$
- For each value of t:
 - need μ elements of ${\mathcal A}$ and μ elements of ${\mathcal B}$
 - perform rank-1 update of ${\cal C}$ square $ightarrow \mu^2$ computations
- Communication-to-computation ratio:

$$\frac{2\mu^2 + 2\mu t}{\mu^2 t} = \frac{2}{t} + \frac{2}{\mu} \to \frac{2}{\sqrt{m}}$$

The simplest problem Limited memory

Performance

- Need $2\mu^2$ communications to send/retrieve ${\cal C}$
- For each value of t:
 - need μ elements of ${\mathcal A}$ and μ elements of ${\mathcal B}$
 - perform rank-1 update of ${\mathcal C}$ square $\to \mu^2$ computations
- Communication-to-computation ratio:

$$\frac{2\mu^2 + 2\mu t}{\mu^2 t} = \frac{2}{t} + \frac{2}{\mu} \to \frac{2}{\sqrt{n}}$$

The simplest problem Limited memory

Performance

- Need $2\mu^2$ communications to send/retrieve ${\cal C}$
- For each value of t:
 - need μ elements of ${\mathcal A}$ and μ elements of ${\mathcal B}$
 - perform rank-1 update of ${\mathcal C}$ square $\to \mu^2$ computations
- Communication-to-computation ratio:

$$\frac{2\mu^2 + 2\mu t}{\mu^2 t} = \frac{2}{t} + \frac{2}{\mu} \to \frac{2}{\sqrt{m}}$$

The simplest problem Limited memory

Assessing that performance

- Estimate number of computations made during *m* consecutive communication steps
- Notations:

- $\alpha_{\textit{old}},~\beta_{\textit{old}},$ and $\gamma_{\textit{old}}$ number of buffers dedicated to $\mathcal{A},~\mathcal{B}$ and \mathcal{C} at the beginning

- α_{recv} , β_{recv} , and γ_{recv} number of A, B, and C elements sent by master during *m* steps

- γ_{sent} number of ${\mathcal C}$ elements returned to master during m steps

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

Assessing that performance

- Estimate number of computations made during *m* consecutive communication steps
- Notations:

- α_{old} , β_{old} , and γ_{old} number of buffers dedicated to A, B and C at the beginning

- α_{recv} , β_{recv} , and γ_{recv} number of A, B, and C elements sent by master during *m* steps

- γ_{sent} number of $\mathcal C$ elements returned to master during m steps

・ロト ・ 同ト ・ ヨト ・ ヨト
The simplest problem Limited memory

Assessing that performance

• Equations:

$$\left\{ \begin{array}{l} \alpha_{\textit{old}} + \beta_{\textit{old}} + \gamma_{\textit{old}} \leq m \\ \alpha_{\textit{recv}} + \beta_{\textit{recv}} + \gamma_{\textit{recv}} + \gamma_{\textit{sent}} = m \end{array} \right.$$

• Simplify notations:

$$\begin{array}{l} \alpha_{old} + \alpha_{recv} = \alpha m \\ \beta_{old} + \beta_{recv} = \beta m \\ \gamma_{old} + \gamma_{recv} = \gamma m \end{array}$$

(日)

The simplest problem Limited memory

Assessing that performance

• Equations:

$$\begin{cases} \alpha_{old} + \beta_{old} + \gamma_{old} \le m \\ \alpha_{recv} + \beta_{recv} + \gamma_{recv} + \gamma_{sent} = m \end{cases}$$

• Simplify notations:

$$\begin{cases} \alpha_{old} + \alpha_{recv} = \alpha m \\ \beta_{old} + \beta_{recv} = \beta m \\ \gamma_{old} + \gamma_{recv} = \gamma m \end{cases}$$

< □ > < 同 > < 三 >

э

The simplest problem Limited memory

Assessing the performance

Loomis-Whitney inequality

if N_A elements of A, N_B elements of B and N_C elements of C are accessed, then no more than K computations can be done:

$$K = \sqrt{N_A N_B N_C}$$

Here

$$\mathsf{K} = \sqrt{\alpha + \beta + \gamma} \times \mathsf{m}\sqrt{\mathsf{m}}$$

< ロ > < 同 > < 三 > < 三

The simplest problem Limited memory

Assessing the performance

• Solution:

$$\alpha = \beta = \gamma = rac{2}{3}, ext{ and } k = \sqrt{rac{8}{27}}$$

• Lower bound for communication-to-computation ratio:

$$\frac{m}{K} = \frac{m}{km\sqrt{m}} = \sqrt{\frac{27}{8m}}$$

• *Maximum re-use algorithm* communication-to-computation ratio:

$$\frac{2}{\sqrt{m}} = \sqrt{\frac{32}{8m}}$$

(日) (同) (三) (三)

The simplest problem Limited memory

Assessing the performance

• Solution:

$$\alpha = \beta = \gamma = \frac{2}{3}$$
, and $k = \sqrt{\frac{8}{27}}$

• Lower bound for communication-to-computation ratio:

$$\frac{m}{K} = \frac{m}{km\sqrt{m}} = \sqrt{\frac{27}{8m}}$$

• *Maximum re-use algorithm* communication-to-computation ratio:

$$\frac{2}{\sqrt{m}} = \sqrt{\frac{32}{8m}}$$

(日) (同) (三) (三)

The simplest problem Limited memory

Assessing the performance

• Solution:

$$\alpha = \beta = \gamma = rac{2}{3}, ext{ and } k = \sqrt{rac{8}{27}}$$

• Lower bound for communication-to-computation ratio:

$$\frac{m}{K} = \frac{m}{km\sqrt{m}} = \sqrt{\frac{27}{8m}}$$

• Maximum re-use algorithm communication-to-computation ratio:

$$\frac{2}{\sqrt{m}} = \sqrt{\frac{32}{8m}}$$

< ロ > < 同 > < 三 > < 三

-

Homogeneous platforms Heterogeneous platforms

Outline

- 2 Theoretical study
 - The simplest problem
 - Limited memory

3 Parallel algorithms

- Homogeneous platforms
- Heterogeneous platforms

4 Experiments

5 Conclusion

▲ 同 ▶ ▲ 目

Homogeneous platforms Heterogeneous platforms

Outline

- 2 Theoretical study
 - The simplest problem
 - Limited memory

3 Parallel algorithms

- Homogeneous platforms
- Heterogeneous platforms

4 Experiments

5 Conclusion

< 同 ▶

Homogeneous platforms Heterogeneous platforms

With several workers

Problem

• How to extend the maximum re-use algorithm?

• How many workers to enroll?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Homogeneous platforms Heterogeneous platforms

With several workers

Problem

• How to extend the maximum re-use algorithm?

• How many workers to enroll?

< ロ > < 同 > < 回 > < 回 >

Homogeneous platforms Heterogeneous platforms

With several workers

Solution

- How to extend the maximum re-use algorithm?
 - Send files to workers according to the *maximum re-use* algorithm in a *Round-Robin* way
- How many workers to enroll?

< □ > < 同 > < 三 >

Homogeneous platforms Heterogeneous platforms

With several workers

Solution

- How to extend the maximum re-use algorithm?
 - Send files to workers according to the *maximum re-use* algorithm in a *Round-Robin* way
- How many workers to enroll?
 - Enroll workers until the first one finishes its task

Homogeneous platforms Heterogeneous platforms

Resource selection

c= 2, w= 4.5, $\mu=$ 4, t= 100, enroll $\mathfrak{P}=$ 5 workers

イロト 不得 とうせい かびとう ほう

Homogeneous platforms Heterogeneous platforms

Resource selection

c= 2, w= 4.5, $\mu=$ 4, t= 100, enroll $\mathfrak{P}=$ 5 workers

イロト 不得 とうせい かびとう ほう

Homogeneous platforms Heterogeneous platforms

Resource selection

c= 2, w= 4.5, $\mu=$ 4, t= 100, enroll $\mathfrak{P}=$ 5 workers

イロト 不得 とうせい かびとう ほう

Homogeneous platforms Heterogeneous platforms

Resource selection

c= 2, w= 4.5, $\mu=$ 4, t= 100, enroll $\mathfrak{P}=$ 5 workers

イロト 不得 とくほ とくほ とうほう

Homogeneous platforms Heterogeneous platforms

Resource selection

c= 2, w= 4.5, $\mu=$ 4, t= 100, enroll $\mathfrak{P}=$ 5 workers

(a)

3

Homogeneous platforms Heterogeneous platforms

Resource selection

c= 2, w= 4.5, $\mu=$ 4, t= 100, enroll $\mathfrak{P}=$ 5 workers

イロト 不同 ト イヨト イヨト

3

Homogeneous platforms Heterogeneous platforms

Performance

• Assume $\mathfrak{P} \leq p$ participating workers

- In a round (computing a *C* block entirely), master communicates with each worker:
 - $2\mu^2$ blocks of ${\cal C}$ (either sent or received)
 - 2 μt blocks of ${\cal A}$ and ${\cal B}$
- In a round, each worker computes $\mu^2 t$ updates
- For large *t*, neglect input/output of *C* blocks, and find the smallest \mathfrak{P} such that

$$(2\mu tc) imes \mathfrak{P} \geq \mu^2 tw \iff \mathfrak{P} = \left\lceil \frac{\mu w}{2c} \right\rceil$$
 In the example, $\mathfrak{P} = \lceil 4.5 \rceil$

- 4 同 2 4 日 2 4 日

Homogeneous platforms Heterogeneous platforms

Performance

- Assume $\mathfrak{P} \leq p$ participating workers
- In a round (computing a *C* block entirely), master communicates with each worker:
 - $2\mu^2$ blocks of C (either sent or received)
 - $2\mu t$ blocks of ${\cal A}$ and ${\cal B}$
- In a round, each worker computes $\mu^2 t$ updates
- For large *t*, neglect input/output of *C* blocks, and find the smallest \mathfrak{P} such that

$$(2\mu tc) imes \mathfrak{P} \geq \mu^2 tw \ \Leftrightarrow \mathfrak{P} = \left\lceil rac{\mu w}{2c}
ight
ceil$$
 In the example, $\mathfrak{P} = \left\lceil 4.5
ight
ceil$

(日) (同) (三) (三)

Homogeneous platforms Heterogeneous platforms

Performance

- Assume $\mathfrak{P} \leq p$ participating workers
- In a round (computing a *C* block entirely), master communicates with each worker:
 - $2\mu^2$ blocks of C (either sent or received)
 - $2\mu t$ blocks of ${\cal A}$ and ${\cal B}$
- In a round, each worker computes $\mu^2 t$ updates
- For large *t*, neglect input/output of *C* blocks, and find the smallest \mathfrak{P} such that

$$(2\mu tc) imes \mathfrak{P} \geq \mu^2 tw \ \Leftrightarrow \mathfrak{P} = \left\lceil rac{\mu w}{2c}
ight
ceil$$
 In the example, $\mathfrak{P} = \left\lceil 4.5
ight
ceil$

(日) (同) (三) (三)

Homogeneous platforms Heterogeneous platforms

Performance

- Assume $\mathfrak{P} \leq p$ participating workers
- In a round (computing a *C* block entirely), master communicates with each worker:
 - $2\mu^2$ blocks of C (either sent or received)
 - $2\mu t$ blocks of ${\cal A}$ and ${\cal B}$
- In a round, each worker computes $\mu^2 t$ updates
- For large t, neglect input/output of C blocks, and find the smallest $\mathfrak P$ such that

$$(2\mu tc) imes \mathfrak{P} \geq \mu^2 tw \ \Leftrightarrow \mathfrak{P} = \left\lceil rac{\mu w}{2c}
ight
ceil$$
 In the example, $\mathfrak{P} = \left\lceil 4.5
ight
ceil$

- 4 周 b - 4 戸 b - 4 戸 b

Homogeneous platforms Heterogeneous platforms

Performance

- Assume $\mathfrak{P} \leq p$ participating workers
- In a round (computing a *C* block entirely), master communicates with each worker:
 - $2\mu^2$ blocks of C (either sent or received)
 - $2\mu t$ blocks of ${\cal A}$ and ${\cal B}$
- In a round, each worker computes $\mu^2 t$ updates
- For large *t*, neglect input/output of *C* blocks, and find the smallest \mathfrak{P} such that

$$(2\mu tc) imes \mathfrak{P} \geq \mu^2 tw \iff \mathfrak{P} = \left\lceil rac{\mu w}{2c}
ight
ceil$$
 In the example, $\mathfrak{P} = \left\lceil 4.5
ight
ceil$

- 4 周 b - 4 戸 b - 4 戸 b

Homogeneous platforms Heterogeneous platforms

Outline

4 Experiments

5 Conclusion

< 6 >

Homogeneous platforms Heterogeneous platforms

Resource selection

Problem

- Each worker P_i has parameters c_i , w_i , and $\mu_i = \sqrt{m_i}$.
- Each participating P_i needs δ_i = 2μ_itc_i communications to process φ_i = tμ_i²w_i computations (neglect I/O for C blocks)
- Which workers to enroll?

(日) (同) (三) (三)

Homogeneous platforms Heterogeneous platforms

Steady-State

- In steady-state, P_i receives $y_i A$ and B blocks per time-unit
- In steady-state, P_i computes $x_i C$ blocks per time-unit

$$\begin{array}{l} \text{MAXIMIZE } \sum_{i} x_{i} \\ \text{SUBJECT TO} \\ \frac{x_{i}}{\mu_{i}^{2}} \leq \frac{y_{i}}{2\mu_{i}} \\ x_{i}w_{i} \leq 1 \\ \sum_{i} y_{i}c_{i} \leq 1 \end{array}$$

< A >

Homogeneous platforms Heterogeneous platforms

Steady-State

 $\begin{cases} \text{MAXIMIZE } \sum_{i} x_{i} \\ \text{SUBJECT TO} \\ \frac{x_{i}}{\mu_{i}^{2}} \leq \frac{y_{i}}{2\mu_{i}} \\ x_{i}w_{i} \leq 1 \\ \sum_{i} y_{i}c_{i} \leq 1 \end{cases} \Leftrightarrow$

Claim $y_i = \frac{2x_i}{\mu_i}$

 $\begin{array}{l} \text{MAXIMIZE} \sum_{i} x_{i} \\ \text{SUBJECT TO} \\ x_{i} \leq \frac{1}{w_{i}} \\ \sum_{i} \frac{2c_{i}}{\mu_{i}} x_{i} \leq 1 \end{array}$

(日) (同) (三) (三)

3

Homogeneous platforms Heterogeneous platforms

Steady-State

 $\left\{ \begin{array}{l} \text{MAXIMIZE } \sum_{i} x_{i} \\ \text{SUBJECT TO} \\ x_{i} \leq \frac{1}{w_{i}} \\ \sum_{i} \frac{2c_{i}}{\mu_{i}} x_{i} \leq 1 \end{array} \right.$

- Bandwidth-centric strategy:
 - Sort workers by non-decreasing $\frac{2c_i}{\mu_i}$
 - Enroll them as long as $\sum \frac{2c_i}{\mu_i w_i} \leq 1$
 - Achieve throughput $\rho \approx \sum_{i \text{ enrolled } w_i}^{i}$

▲ □ ► < □ ►</p>

Homogeneous platforms Heterogeneous platforms

Steady-State

- Sort workers by non-decreasing $\frac{-\omega_i}{\mu_i}$
- Enroll them as long as $\sum \frac{2c_i}{\mu_i w_i} \leq 1$
- Achieve throughput $\rho \approx \sum_{i \text{ enrolled } \frac{1}{w_i}}$

Homogeneous platforms Heterogeneous platforms

No, we don't have enough memory!

	P_1	<i>P</i> ₂
Ci	1	20
Wi	2	40
μ_i	2	2
$\frac{2c_i}{\mu_i w_i}$	$\frac{1}{2}$	$\frac{1}{2}$

- Every 160 seconds:
 - P_1 receives 80 blocks (20 $\mu_1 imes \mu_1$ chunks) in 80 seconds
 - P_1 computes 80 blocks in 160 seconds
 - P_2 receives 4 blocks (1 $\mu_2 \times \mu_2$ chunk) in 80 seconds
 - P_2 computes 4 blocks in 160 seconds
- P_1 computes two slowly and needs buffers to store 20 blocks!

Homogeneous platforms Heterogeneous platforms

No, we don't have enough memory!

	P_1	<i>P</i> ₂
Ci	1	20
Wi	2	40
μ_i	2	2
$\frac{2c_i}{\mu_i w_i}$	$\frac{1}{2}$	$\frac{1}{2}$

- Every 160 seconds:
 - P_1 receives 80 blocks (20 $\mu_1 imes \mu_1$ chunks) in 80 seconds
 - P_1 computes 80 blocks in 160 seconds
 - P_2 receives 4 blocks (1 $\mu_2 \times \mu_2$ chunk) in 80 seconds
 - P_2 computes 4 blocks in 160 seconds
- P1 computes two slowly and needs buffers to store 20 blocks!

イロト イポト イラト イラト

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Μ	
P_1	
1	
P_2	
P_3	

	P_1	P_2	P_3
Ci	2	3	5
Wi	2	3	1
μ_i	6	18	10
$2\mu_i c_i$	24	108	100
$\mu_i^2 w_i$	72	972	100
$\frac{2c_i}{\mu_i}$	$\frac{2}{3}$	$\frac{1}{3}$	1
$\frac{2c_i}{\mu_i w_i}$	$\frac{1}{3}$	$\frac{1}{9}$	$1 ightarrow rac{5}{9}$

Jean-François Pineau Revisiting matrix product on heterogeneous platforms

/∄ ▶ ∢ ∃ ▶

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

If first communication to P_1 ,

$$ratio = \frac{\mu_1^2}{2\mu_1 c_1} = \frac{36}{24} = \frac{3}{2}$$

Ratios: $P_1 : 1.5$

< ロ > < 同 > < 三 > < 三

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

If first communication to P_2 ,

$$ratio = \frac{\mu_2^2}{2\mu_2 c_2} = \frac{324}{108} = 3$$

Ratios: $P_1 : 1.5 P_2 : 3$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

If first communication to P_3 ,

$$ratio = \frac{\mu_3^2}{2\mu_3 c_3} = \frac{100}{100} = 1$$

Ratios: P_1 : 1.5 P_2 : 3 P_3 : 1

< ロ > < 同 > < 三 > < 三

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Best solution : first communication to P_2

< □ > < 同 > < 三 >
Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Two policy: Local If second communication to P_1 ,

ratio
$$= \frac{\mu_1^2}{2\mu_1 c_1} = \frac{36}{24} = \frac{3}{2}$$

Ratios: P_1 : 1.5

Image: A = A

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Two policy: Local If second communication to P_2 ,

$$ratio = \frac{\mu_2^2}{2\mu_2 c_2 + \max\{\mu_2^2 w_2, 2\mu_2 c_2\}} = \frac{324}{1080} = 0.30$$

Ratios: P_1 : 1.5 P_2 : 0.30

< □ > < 同 > < 三 >

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Two policy: Local If second communication to P_{3} ,

$$ratio = \frac{\mu_3^2}{2\mu_3 c_3} = \frac{100}{100} = 1$$

Ratios: P_1 : 1.5 P_2 : 0.30 P_3 : 1

< □ > < 同 > < 三 >

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Two policy: Global If second communication to P_1 ,

$$ratio = \frac{\mu_2^2 + \mu_1^2}{2\mu_2 c_2 + 2\mu_1 c_1} = \frac{324 + 36}{108 + 24} = 2.71$$

Ratios: *P*₁ : 2.71

Image: A = A

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Two policy: Global If second communication to P_2 ,

$$ratio = \frac{\mu_2^2 + \mu_2^2}{2\mu_2 c_2 + 2\mu_2 c_2} = \frac{324 + 324}{1080} = 0.60$$

Ratios: P_1 : 2.71 P_2 : 0.60

< □ > < 同 > < 三 >

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Two policy: Global If second communication to P_3 ,

$$ratio = \frac{\mu_2^2 + \mu_3^2}{2\mu_2 c_2 + 2\mu_3 c_3} = \frac{324 + 100}{108 + 100} = 2.04$$

Ratios: P_1 : 2.71 P_2 : 0.60 P_3 : 2.04

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Best solution : second communication to P_1

< □ > < 同 > < 三 >

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

If third communication to P_1 ,

$$ratio = \frac{\mu_2^2 + \mu_1^2 + \mu_1^2}{t_{\rm comm}} = \frac{360 + 36}{168} = 2.36$$

Ratios: P_1 : 1.93

< ロ > < 同 > < 三 > < 三

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

If third communication to P_2 ,

$$ratio = \frac{\mu_2^2 + \mu_1^2 + \mu_2^2}{t_{\text{comm}}} = \frac{360 + 324}{1080} = 0.63$$

Ratios: P_1 : 1.93 P_2 : 0.63

< ロ > < 同 > < 三 > < 三

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

If third communication to P_3 ,

$$\textit{ratio} = \frac{\mu_2^2 + \mu_1^2 + \mu_3^2}{2\mu_2 c_2 + 2\mu_1 c_1 + 2\mu_3 c_3} = \frac{360 + 100}{132 + 100} = 1.97$$

Ratios:

P_1 : 1.93 P_2 : 0.63 P_3 : 1.97 Best solution: third communication to P_3

・ロト ・同ト ・ヨト ・ヨト

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Asymptotic ratio: 1.17 (*divisible* throughput 1.39) Allocated bandwidths: 14.8%, 11.2%, and 61.7% (instead of 33.3%, 11.1%, and 55.6%)

Two-block look-ahead greedy Asymptotic ratio: 1.30 (*divisible* throughput 1.39) Allocated bandwidths: 17.2%, 11.1%, and 71.7%

Homogeneous platforms Heterogeneous platforms

Greedy heuristic for heterogeneous platforms

Asymptotic ratio: 1.17 (*divisible* throughput 1.39) Allocated bandwidths: 14.8%, 11.2%, and 61.7% (instead of 33.3%, 11.1%, and 55.6%)

Two-block look-ahead greedy Asymptotic ratio: 1.30 (*divisible* throughput 1.39) Allocated bandwidths: 17.2%, 11.1%, and 71.7%

< A >

Outline

Framework

- 2 Theoretical study
 - The simplest problem
 - Limited memory

3 Parallel algorithms

- Homogeneous platforms
- Heterogeneous platforms

4 Experiments

5 Conclusion

The studied algorithms

- Homogeneous algorithm
- Overlapped Round-Robin, Optimized Memory Layout (**ORROML**)
- Overlapped Min-Min, Optimized Memory Layout (OMMOML)
- Overlapped Demand-Driven, Optimized Memory Layout (**ODDOML**)
- Demand-Driven, Optimized Memory Layout (DDOML)
- Block Matrix Multiply (BMM)
- Overlapped Block Matrix Multiply (OBMM)

(日) (同) (三) (三)

Results

Performance of the algorithms on different matrices.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results

Variation of algorithm execution times.

э

Results

Impact of memory size on algorithm performance.

Jean-François Pineau Revisiting matrix product on heterogeneous platforms

- 4 回 > - 4 回 > - 4 回 >

æ

Outline

Framework

- 2 Theoretical study
 - The simplest problem
 - Limited memory

3 Parallel algorithms

- Homogeneous platforms
- Heterogeneous platforms

4 Experiments

5 Conclusion

- Key points:
 - Realistic platform model
 - Lower bound on total number of communications
 - Design of efficient parallel algorithms
- Extensions:
 - Improve lower bound to match algorithm performance
 - Run heterogeneous experiments
 - Investigate LU/Cholesky

A (1) < (1) < (1) </p>