Bi-objective Scheduling Algorithms for Optimizing Makespan and Reliability on Heterogeneous Systems

Jack J. Dongarra, Emmanuel Jeannot, E. Saule and Zhiao Shi

INRIA & Innovative Computing Laboratory & LIG dongarra@cs.utk.edu, ejeannot@loria.fr, erik.saule@imag.fr ,shi@cs.utk.edu

Outline of the talk

- 1 Introduction, related work and modeling
- 2 The problem
- 3 Independent unitary tasks
- Independent tasks
- General Case
- 6 Conclusion

Introduction

Problem studied:

- scheduling DAG
- heterogeneous systems
- hardware can fail

Bi-criteria objective:

- given a makespan objective
- optimize reliability

Related work

A "new subject":

- Dogan & Ozgüner 2002: Model the problem, RDLS bi-criteria heuristic.
- Dogan & Ozgüner 2004: enhancement of previous result (GA).
- Qin & Jiang 2005: first optimize deadline, then maximize reliability.
- Hakem & Butelle 2006: BSA, bi-criteria heuristic that outperforms RDLS.

Modeling

- G = (V, E): a DAG.
- $v_i \in V$ is associated a number of operations: o_i .
- \bullet n = |V|
- $e_i = (i, j) \in E$ is associated l_i the time to send data from task v_i to task v_i (if they are not executed on the processor).
- a set *P* of *m* processors
- processor $p_i \in P$ is associated with two values:
 - ullet au_j the time to perform one operation and
 - λ_i the failure rate.
- v_i executed on p_j will last $o_i \times \tau_j$.

Modeling

- G = (V, E): a DAG.
- $v_i \in V$ is associated a number of operations: o_i .
- \bullet n = |V|
- $e_i = (i, j) \in E$ is associated l_i the time to send data from task v_i to task v_i (if they are not executed on the processor).
- a set *P* of *m* processors
- processor $p_i \in P$ is associated with two values:
 - τ_i the time to perform one operation and
 - λ_i the failure rate.
- v_i executed on p_i will last $o_i \times \tau_i$.

Assumption:

- Processors are subject to crash fault only.
- During the execution of the DAG, the failure rate is constant.
- ⇒ failure model follows an exponential law.
- \Rightarrow probability that v_i finishes (correctly) its execution:

$$e^{-o_i \times \tau_j \times \lambda_j}$$

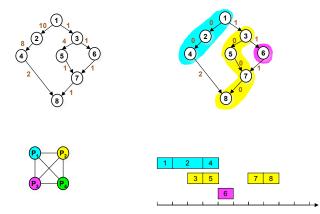
Outline

- Introduction, related work and modeling
- 2 The problem
- Independent unitary tasks
- 4 Independent tasks
- General Case
- 6 Conclusion

Scheduling problem

Allocate tasks to processors such that:

- two tasks cannot be allocated to the same processor at the same time,
- dependencies are respected.



Criteria

 C_j : termination date of processor j

Two criteria to optimize:

• Makespan: minimize

$$M = \max(C_j)$$

• Reliability: maximize

$$p_{\text{succ}} = \prod_{j=1}^{m} e^{-C_j \lambda_j} = e^{-\sum_{j=1}^{m} C_j \lambda_j}$$

or minimize

$$Rel = \sum_{j=1}^{m} C_j \lambda_j$$

Approximation algorithm and probability

Let p_{succ} (resp. p_{fail}) be the probability of success (resp. of failure) of a schedule S.

Let \tilde{p}_{succ} (resp. \tilde{p}_{fail}) be the optimal probability of success (resp. of failure) for the same input as S.

Approximation algorithm and probability

Let p_{succ} (resp. p_{fail}) be the probability of success (resp. of failure) of a schedule S.

Let \tilde{p}_{succ} (resp. \tilde{p}_{fail}) be the optimal probability of success (resp. of failure) for the same input as S.

$$\beta = 5$$
, $\tilde{p}_{\mathsf{fail}} = 0.3 \Rightarrow p_{\mathsf{fail}} \leq \beta \cdot \tilde{p}_{\mathsf{fail}} = 5 \times 0.3 = 1.5!$

Approximation algorithm and probability

Let p_{succ} (resp. p_{fail}) be the probability of success (resp. of failure) of a schedule S.

Let \tilde{p}_{succ} (resp. \tilde{p}_{fail}) be the optimal probability of success (resp. of failure) for the same input as S.

$$\beta = 5$$
, $\tilde{p}_{\mathsf{fail}} = 0.3 \Rightarrow p_{\mathsf{fail}} \leq \beta \cdot \tilde{p}_{\mathsf{fail}} = 5 \times 0.3 = 1.5!$

Proposition

$$p_{succ} \geq \tilde{p}_{succ}^{eta} \Rightarrow p_{fail} \leq eta \cdot \tilde{p}_{fail}$$

$$\Rightarrow$$
 minimize $Rel = \sum_{j=1}^{m} C_j \lambda_j$

Optimizing rel

Proposition

Let S be a schedule where all the tasks have been assigned, in topological order, to the processor i such that $\lambda_i \tau_i$ is minimum. Then any schedule S' is such that $p'_{succ} \leq p_{succ}$.

Optimizing rel

Proposition

Let S be a schedule where all the tasks have been assigned, in topological order, to the processor i such that $\lambda_i \tau_i$ is minimum. Then any schedule S' is such that $p'_{succ} \leq p_{succ}$.

Proof

- s.w.l.o.g i = 1 (i. e., $\forall j: \tau_1 \lambda_1 \leq \tau_j \lambda_j$).
- $p_{SUCC} = e^{-C_1 \lambda_1}, p'_{SUCC} = e^{-\sum_{j=0}^{m} C'_j \lambda_j}.$
- $T = T_2 \cup ... \cup T_m$, sets of the tasks allocated to processors 2, ..., m by S'.
- $C_1' \geq C_1 \tau_1 \sum_{v_i \in T} o_i$.
- $\forall 2 \leq j \leq m, \ C'_j \geq \tau_j \sum_{v_i \in T_i} o_i$

Optimizing rel

Proposition

Let S be a schedule where all the tasks have been assigned, in topological order, to the processor i such that $\lambda_i \tau_i$ is minimum. Then any schedule S' is such that $p'_{succ} \leq p_{succ}$.

Proof

- s.w.l.o.g i = 1 (i. e., $\forall j: \tau_1 \lambda_1 \leq \tau_j \lambda_j$).
- $p_{\text{succ}} = e^{-C_1 \lambda_1}, p'_{\text{succ}} = e^{-\sum_{j=0}^{m} C'_j \lambda_j}.$
- $T = T_2 \cup ... \cup T_m$, sets of the tasks allocated to processors 2, ..., m by S'.
- $C_1' \geq C_1 \tau_1 \sum_{v_i \in T} o_i$.
- $\forall 2 \leq j \leq m, \ C'_j \geq \tau_j \sum_{v_i \in T_i} o_i$

$$\sum_{j=1}^{m} C'_{j} \lambda_{j} - C_{1} \lambda_{1} \geq \sum_{j=2}^{m} \left((\tau_{j} \lambda_{j} - \tau_{1} \lambda_{1}) \sum_{v_{i} \in T_{j}} o_{i} \right) \geq 0$$

$$\Rightarrow \frac{p_{\mathsf{SUCC}}}{p'_{\mathsf{SUCC}}} = e^{\sum_{j=1}^{m} C'_{j} \lambda_{j} - C_{1} \lambda_{1}} \geq 1$$

Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the same time ?

Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the same time ?

Theorem

The problem of minimizing the C_{max} and Rel is unapproximable within a constant factor.

Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the same time ?

Theorem

The problem of minimizing the C_{max} and Rel is unapproximable within a constant factor.

Proof Two machines such that $\tau_2 = \tau_1/k$ and $\lambda_2 = k^2 \lambda_1$ ($k \in \mathbb{R}^{+*}$).

A single task t_1 where $o_1 = 1$.

 $C_{\sf max}(S_1) = au_1$ and $C_{\sf max}(S_2) = au_1/k$. This leads to $C_{\sf max}(S_1)/C_{\sf max}(S_2) = k$. S_1 is not an approximation on both criteria

 $Rel(S_1) = \tau_1 \lambda_1$ and $Rel(S_2) = \tau_1 \lambda_1 k$. This leads to $Rel(S_1)/Rel(S_2) = k$. S_2 is not an approximation on both criteria.

No solution of this instance approximates both criteria.

Back to Definition

Optimality

In multi-criteria, k functions are optimized $f_1 \dots f_k$. Solution S' is **Pareto dominated** by S if $\forall i, f_i(S) \leq f_i(S')$. A solution which is not dominated is **Pareto-optimale**.

Back to Definition

Optimality

In multi-criteria, k functions are optimized $f_1 \dots f_k$. Solution S' is **Pareto dominated** by S if $\forall i, f_i(S) \leq f_i(S')$. A solution which is not dominated is **Pareto-optimale**.

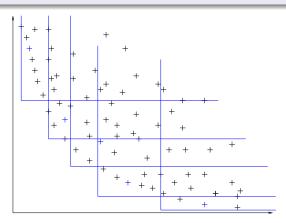
Pareto Curve

The **Pareto curve** is the set P of all Pareto optimal solution. We should remark that the size of P can be exponential.

Approximating the Pareto curve

Definition

Informally, P is a $\rho = (\rho_1, \rho_2, \dots, \rho_k)$ approximation of P^* if each solution $S^* \in P^*$ is ρ approximated by a solution $S \in P$. Formally, $\forall S^* \in P^*, \exists S \in P, \forall i, f_i(S) \leq \rho_i f_i(S^*)$.



Bi-criteria scheduling

Objective: maximizing the reliability subject to the condition that the makespan is minimized.

- Finding the optimal makespan, is most of the time NP-hard,
- we aim at designing an " α , β "-approximation algorithm.
- " α , β "-approximation algorithm:
 - ullet makespan at most lpha times larger than the optimal one,
 - probability of failure is at most β times larger than the optimal one (among the schedules that minimize the makespan).

Outline

- Introduction, related work and modeling
- 2 The problem
- Independent unitary tasks
- 4 Independent tasks
- General Case
- 6 Conclusion

Independent unitary tasks

$$o_i = 1$$
 and $E = \emptyset$, $n = |V|$.

Independent unitary tasks

$$o_i = 1$$
 and $E = \emptyset$, $n = |V|$.

 $\textbf{Algorithm 1} \ \, \textbf{Makespan-optimal allocation for independent unitary tasks}$

for i=1 to P
$$n_i \leftarrow \left\lfloor \frac{1/\tau_i}{\sum 1/\tau_i} \right\rfloor \times n$$
while $\sum n_i < n$

$$k = \operatorname{argmin}(\tau_k(n_k + 1))$$

$$n_k \leftarrow n_k + 1$$

Theorem

Algorithm 1 is optimal for the Makespan

Optimal algorithm for Independent unitary tasks

Algorithm 2 Optimal reliable allocation for independent unitary tasks

```
Input: \alpha \in [1, +\infty[
Compute M = \alpha M_{\rm opt} using previous algorithm
Sort the processor by increasing \lambda_i \tau_i
X \leftarrow 0
for i=1 to P
   if X < N
         n_i \leftarrow \min\left(N - X, \left|\frac{M}{\tau_i}\right|\right)
   else
         n_i \leftarrow 0
   X \leftarrow X + n
```

Optimal algorithm for Independent unitary tasks

Algorithm 2 Optimal reliable allocation for independent unitary tasks

```
Input: \alpha \in [1, +\infty[
Compute M = \alpha M_{\rm opt} using previous algorithm
Sort the processor by increasing \lambda_i \tau_i
X \leftarrow 0
for i=1 to P
   if X < N
         n_i \leftarrow \min\left(N - X, \left|\frac{M}{\tau_i}\right|\right)
   else
         n_i \leftarrow 0
   X \leftarrow X + n
```

Theorem

Algorithm 2 is an " α ,1" approximation algorithm

A $(1+\epsilon,1)$ -approximation of the Pareto curve

Algorithm 3 Pareto Curve approximation algorithm

```
Input: \epsilon \in [0, +\infty[
Compute M_{\text{opt}} using Algorithm 1.
Compute M_{max} using Proposition 2.
S \leftarrow \emptyset
for i=1:\lceil log_{1+\epsilon} \frac{M_{max}}{M_{\text{opt}}} \rceil

let S_i=Algorithm 2 with \alpha = (1+\epsilon)^i
S \leftarrow S \cup S_i
return S
```

A $(1+\epsilon,1)$ -approximation of the Pareto curve

Algorithm 3 Pareto Curve approximation algorithm

```
Input: \epsilon \in [0, +\infty[
Compute M_{\text{opt}} using Algorithm 1.
Compute M_{max} using Proposition 2.
S \leftarrow \emptyset
for i=1:\lceil log_{1+\epsilon} \frac{M_{max}}{M_{\text{opt}}} \rceil

let S_i=Algorithm 2 with \alpha = (1+\epsilon)^i
S \leftarrow S \cup S_i
return S
```

proof.

Let
$$\sigma$$
 be a Pareto-optimal schedule. Then $(1+\epsilon)^k M_{\mathrm{opt}} \leq C_{\mathrm{max}}(\sigma) \leq (1+\epsilon)^{k+1} M_{\mathrm{opt}}.$ S_{k+1} is an $(1+\epsilon,1)$ -approximation of σ .

Outline

- 1 Introduction, related work and modeling
- 2 The problem
- Independent unitary tasks
- Independent tasks
- General Case
- 6 Conclusion

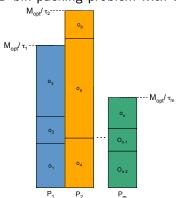
 $E = \emptyset$

$$E = \emptyset$$

Makespan problem related to the 1-D bin-packing problem with variable bin size.

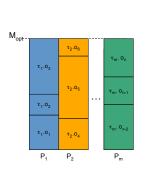
 $E = \emptyset$

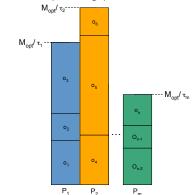
Makespan problem related to the 1-D bin-packing problem with variable bin size. M_{op}/τ_2



$$E = \emptyset$$

Makespan problem related to the 1-D bin-packing problem with variable bin size. M_{opt}/τ_2 -----





$$\sum_{i=1}^{m} \frac{M_{\text{opt}}}{\tau_i} = \sum_{i=1}^{n} o_i \Rightarrow M_{\text{opt}} = \frac{\sum_{i=1}^{n} o_i}{\sum_{j=1}^{m} \frac{1}{\tau_i}}$$

Makespan/reliability Trade-off

Recall: scheduling all the tasks on the processors i such that $i = \operatorname{argmin}(\tau_i \lambda_i)$ leads to the best possible reliability.

Makespan/reliability Trade-off

Recall: scheduling all the tasks on the processors i such that $i = \operatorname{argmin}(\tau_i \lambda_i)$ leads to the best possible reliability.

Generalization:

Proposition

The best possible reliability among all the schedule with makespan at most M is achieved when:

Makespan/reliability Trade-off

Recall: scheduling all the tasks on the processors i such that $i = \operatorname{argmin}(\tau_i \lambda_i)$ leads to the best possible reliability.

Generalization:

Proposition

The best possible reliability among all the schedule with makespan at most M is achieved when:

- **1** tasks are mapped to \tilde{m} processors in increasing order of $\lambda_i \tau_i$,
- ② the $\tilde{m}-1$ first processors execute tasks up to the date M ($C_i=M$),
- **1** the \tilde{m} processor executes the remaining tasks $(C_{\tilde{m}} \leq M)$.

Makespan/reliability Trade-off

Recall: scheduling all the tasks on the processors i such that $i = \operatorname{argmin}(\tau_i \lambda_i)$ leads to the best possible reliability.

Generalization:

Proposition

The best possible reliability among all the schedule with makespan at most M is achieved when:

- **1** tasks are mapped to \tilde{m} processors in increasing order of $\lambda_i \tau_i$,
- ② the $\tilde{m}-1$ first processors execute tasks up to the date M ($C_i=M$),
- **3** the \tilde{m} processor executes the remaining tasks $(C_{\tilde{m}} \leq M)$.

Remark: such a schedule is not always feasible (it just gives a lower bound).

Outline

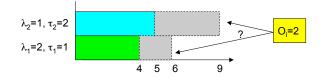
- Introduction, related work and modeling
- 2 The problem
- Independent unitary tasks
- 4 Independent tasks
- General Case
- 6 Conclusion

• HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable Heterogeneous Earlisest Finish Time).

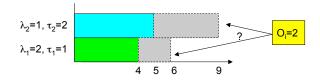
- HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable Heterogeneous Earlisest Finish Time).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.

- HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable Heterogeneous Earlisest Finish Time).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.
- RHEFT: select the task that $T_{\operatorname{end}_j} \times \lambda_j$ is minimum.

- HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable Heterogeneous Earlisest Finish Time).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.
- RHEFT: select the task that $T_{\text{end }i} \times \lambda_i$ is minimum.

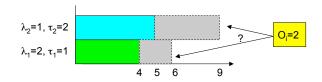


- HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable Heterogeneous Earlisest Finish Time).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.
- RHEFT: select the task that $T_{\operatorname{end}_i} \times \lambda_i$ is minimum.



• $T_{\mathsf{end}\,1} = 6$, $T_{\mathsf{end}\,1} imes \lambda_1 = 12$

- HEFT (Heterogenous Earlisest Finish Time) to RHEFT (Reliable Heterogeneous Earlisest Finish Time).
- HEFT: at each step of the heuristic map the task that finishes the earliest to this processors.
- RHEFT: select the task that $T_{\operatorname{end}_i} \times \lambda_i$ is minimum.



- $T_{\sf end1} = 6$, $T_{\sf end1} \times \lambda_1 = 12$
- $T_{\text{end2}} = 9$, $T_{\text{end2}} \times \lambda_2 = 9$

Reliability/Makespan Trade-off

Two ways top find a good trade-off:

Reliability/Makespan Trade-off

Two ways top find a good trade-off:

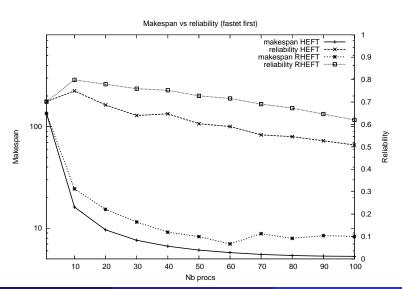
Choose a subset of processors; Q: which order?

Reliability/Makespan Trade-off

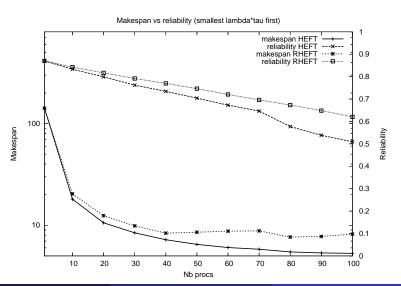
Two ways top find a good trade-off:

- Choose a subset of processors; Q: which order?
- ② Use a trade-off variable α ($\alpha=1$ switch to HEFT, $\alpha=0$ switch to RHEFT).

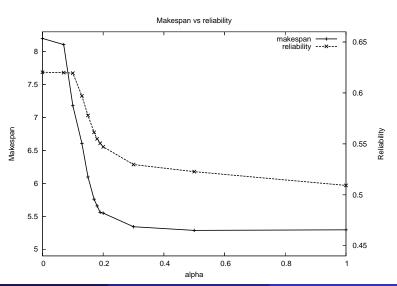
Ordering the processors: fastest first



Ordering the processors: smallest $\lambda \tau$ first



Trade-off variable



Outline

- 1 Introduction, related work and modeling
- 2 The problem
- Independent unitary tasks
- 4 Independent tasks
- General Case
- 6 Conclusion

We have studied the problem of scheduling DAGs, with 2 objectives:

We have studied the problem of scheduling DAGs, with 2 objectives:

minimize makespan

We have studied the problem of scheduling DAGs, with 2 objectives:

- minimize makespan
- maximize reliability

We have studied the problem of scheduling DAGs, with 2 objectives:

- minimize makespan
- maximize reliability

Contribution:

We have studied the problem of scheduling DAGs, with 2 objectives:

- minimize makespan
- maximize reliability

Contribution:

• optimal algorithms for unitary independent tasks,

We have studied the problem of scheduling DAGs, with 2 objectives:

- minimize makespan
- maximize reliability

Contribution:

- optimal algorithms for unitary independent tasks,
- simple way to generalize heuristics to this context,

We have studied the problem of scheduling DAGs, with 2 objectives:

- minimize makespan
- maximize reliability

Contribution:

- optimal algorithms for unitary independent tasks,
- simple way to generalize heuristics to this context,
- characterization of the role of the $\lambda \tau$ value.