Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion

Anne Benoit and Yves Robert

GRAAL team, LIP École Normale Supérieure de Lyon

January 2007

• Mapping applications onto parallel platforms Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

• Chains-on-chains partitioning problem

- no communications
- identical processors
- Extensions (done)
 - with communications
 - with heterogeneous processors/links
 - goal: assess complexity, design heuristics
- Extensions (current work)
 - deal with DEALs
 - deal with DAGs

< ∃ > <

MAO

- Chains-on-chains partitioning problem
 - no communications
 - identical processors
- Extensions (done)
 - with communications
 - with heterogeneous processors/links
 - goal: assess complexity, design heuristics
- Extensions (current work)
 - deal with DEALs
 - deal with DAGs

- Chains-on-chains partitioning problem
 - no communications
 - identical processors
- Extensions (done)
 - with communications
 - with heterogeneous processors/links
 - goal: assess complexity, design heuristics
- Extensions (current work)
 - deal with DEALs
 - deal with DAGs

MAO

Load-balance contiguous tasks 5 7 3 4 8 1 3 8 2 9 7 3 5 2 3 6

Back to Bokhari and Iqbal partitioning papers

See survey by Pinar and Aykanat, JPDC 64, 8 (2004)

< ∃ > <

Load-balance contiguous tasks 5 7 3 4 8 1 3 8 2 9 7 3 5 2 3 6 With p = 4 processors?

Back to Bokhari and Iqbal partitioning papers

• See survey by Pinar and Aykanat, JPDC 64, 8 (2004)

4/41

• = • •

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Chains-or	n-chains					

• Back to Bokhari and Iqbal partitioning papers

• See survey by Pinar and Aykanat, JPDC 64, 8 (2004)

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Chains-or	n-chains					

- Back to Bokhari and Iqbal partitioning papers
- See survey by Pinar and Aykanat, JPDC 64, 8 (2004)

MAO

- Map each pipeline stage on a single processor (no deals)
- Goal: minimize execution time
- Several mapping strategies

- Map each pipeline stage on a single processor (no deals)
- Goal: minimize execution time
- Several mapping strategies

- Map each pipeline stage on a single processor (no deals)
- Goal: minimize execution time
- Several mapping strategies

- Map each pipeline stage on a single processor (no deals)
- Goal: minimize execution time
- Several mapping strategies

- Map each pipeline stage on a single processor (no deals)
- Goal: minimize execution time
- Several mapping strategies

Theory Formal approach to the problem Problem complexity Integer linear program for exact resolution

Practice Heuristics for INTERVAL MAPPING on clusters Experiments to compare heuristics and evaluate their absolute performance

Theory Formal approach to the problem Problem complexity Integer linear program for exact resolution

Practice Heuristics for INTERVAL MAPPING on clusters Experiments to compare heuristics and evaluate their absolute performance

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Outline						

1 Framework

2 Complexity results

Experiments

5 Linear programming formulation

-

∃ ▶ ∢

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
The appl	ication					

• n stages
$$\mathcal{S}_k$$
, $1 \leq k \leq$ n

• \mathcal{S}_k :

- receives input of size δ_{k-1} from \mathcal{S}_{k-1}
- performs w_k computations
- outputs data of size δ_k to \mathcal{S}_{k+1}
- S_0 and S_{n+1} : virtual stages representing the outside world

- p processors P_u , $1 \le u \le p$, fully interconnected
- s_u : speed of processor P_u
- bidirectional link link_{$u,v} : <math>P_u \rightarrow P_v$, bandwidth b_{u,v}</sub></sub>
- one-port model: each processor can either send, receive or compute at any time-step
- *P_{in}*: input data *P_{out}*: output data

Introduction Framework Complexity Heuristics Experiments LP Conclusion Different platforms

Fully Homogeneous – Identical processors $(s_u = s)$ and links
 $(b_{u,v} = b)$: typical parallel machinesCommunication Homogeneous – Different-speed processors
 $(s_u \neq s_v)$, identical links $(b_{u,v} = b)$: networks of
workstations, clusters

$$\label{eq:fully Heterogeneous} \begin{split} & \textit{Fully Heterogeneous} - \textit{Fully heterogeneous architectures, } s_u \neq s_v \\ & \text{and } b_{u,v} \neq b_{u',v'} \text{: hierarchical platforms, grids} \end{split}$$

• • = • • = •

Introduction Framework Complexity Heuristics Experiments LP Conclusion Mapping problem: ONE-TO-ONE MAPPING <td

- $n \leq p$: map each stage S_k onto a distinct processor $P_{alloc(k)}$
- Period of P_{alloc(k)}: minimum delay between processing of two consecutive tasks

- Cycle-time of P_u : $cycle_u = \frac{\delta_{k-1}}{b_{t,u}} + \frac{w_k}{s_u} + \frac{\delta_k}{b_{u,v}}$
- Optimization problem: find the allocation function alloc : $[1,n] \to [1,p]$ which minimizes

$$T_{ ext{period}} = \max_{1 \leq k \leq n} cycle_{ ext{alloc}(k)}$$

(with alloc(0) = in and alloc(n + 1) = out)

Introduction Framework Complexity Heuristics Experiments LP Conclusion Mapping problem: ONE-TO-ONE MAPPING <td

- $n \leq p$: map each stage S_k onto a distinct processor $P_{alloc(k)}$
- Period of P_{alloc(k)}: minimum delay between processing of two consecutive tasks

• Cycle-time of P_u : $cycle_u = \frac{\delta_{k-1}}{b_{t,u}} + \frac{w_k}{s_u} + \frac{\delta_k}{b_{u,v}}$

• Optimization problem: find the allocation function alloc : $[1,n] \to [1,p]$ which minimizes

$$T_{\text{period}} = \max_{1 \le k \le n} cycle_{\text{alloc}(k)}$$

(with alloc(0) = in and alloc(n + 1) = out)

Introduction Framework Complexity Heuristics Experiments LP Conclusion Mapping problem: INTERVAL MAPPING

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Mandatory when p < n
- Partition of [1..n] into m intervals $l_j = [d_j, e_j]$ (with $d_j \le e_j$ for $1 \le j \le m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \le j \le m - 1$ and $e_m = n$)
- Interval I_j mapped onto processor $P_{\text{alloc}(j)}$

$$T_{\text{period}} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}_{\text{alloc}(j-1), \text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} \mathsf{w}_i}{\mathsf{s}_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{\mathsf{b}_{\text{alloc}(j), \text{alloc}(j+1)}} \right\}$$

MAO 12/41

Introduction Framework Complexity Heuristics Experiments LP Conclusion Mapping problem: INTERVAL MAPPING

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Mandatory when p < n
- Partition of [1..n] into m intervals $I_j = [d_j, e_j]$ (with $d_j \leq e_j$ for $1 \leq j \leq m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \leq j \leq m-1$ and $e_m = n$)
- Interval I_j mapped onto processor $P_{\text{alloc}(j)}$

$$T_{\text{period}} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}_{\text{alloc}(j-1), \text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} \mathsf{w}_i}{\mathsf{s}_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{\mathsf{b}_{\text{alloc}(j), \text{alloc}(j+1)}} \right\}$$

MAO 12/41

Introduction Framework Complexity Heuristics Experiments LP Conclusion Mapping problem: INTERVAL MAPPING

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Mandatory when p < n
- Partition of [1..n] into m intervals $I_j = [d_j, e_j]$ (with $d_j \leq e_j$ for $1 \leq j \leq m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \leq j \leq m-1$ and $e_m = n$)
- Interval I_j mapped onto processor $P_{\text{alloc}(j)}$

$$T_{\text{period}} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}_{\text{alloc}(j-1), \text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} \mathsf{w}_i}{\mathsf{s}_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{\mathsf{b}_{\text{alloc}(j), \text{alloc}(j+1)}} \right\}$$

- Not suiting the one-port model very well: can always be replaced by an INTERVAL MAPPING as good as the general one for *Communication Homogeneous* platforms
- Can be the optimal mapping for *Fully Heterogeneous* platforms in some particular cases
- More general, but requires threads and may lead to idle times and races with the one-port model

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Outline						

2 Complexity results

3 Heuristics

Experiments

5 Linear programming formulation

6 Conclusion

(3)

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Complexi	ty results					

	Fully Hom.	Comm. Hom.
One-to-one Mapping		
Interval Mapping		
General Mapping		

•

•

三 のへで

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Complexi	ty results					

	Fully Hom.	Comm. Hom.
One-to-one Mapping	polynomial	polynomial
Interval Mapping		
General Mapping		

- Binary search polynomial algorithm for ONE-TO-ONE MAPPING
- •

۲

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Complexi	ty results					

	Fully Hom.	Comm. Hom.
One-to-one Mapping	polynomial	polynomial
Interval Mapping	polynomial	NP-complete
General Mapping		

- Binary search polynomial algorithm for ONE-TO-ONE MAPPING
- \bullet Dynamic programming algorithm for $\rm INTERVAL~MAPPING$ on Hom. platforms

۲

۲
Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Complexi	ty results					

	Fully Hom.	Comm. Hom.	
One-to-one Mapping	polynomial	polynomial	
Interval Mapping polynomial NP-con		NP-complete	
General Mapping	same complexity as Interval		

- Binary search polynomial algorithm for ONE-TO-ONE MAPPING
- \bullet Dynamic programming algorithm for $\rm INTERVAL~MAPPING$ on Hom. platforms
- General mapping: same complexity as INTERVAL MAPPING

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Complexi	ty results					

	Fully Hom.	Comm. Hom.		
One-to-one Mapping	polynomial	polynomial		
Interval Mapping	polynomial	NP-complete		
General Mapping	same complexity as Interval			

- Binary search polynomial algorithm for ONE-TO-ONE MAPPING
- Dynamic programming algorithm for INTERVAL MAPPING on Hom. platforms
- General mapping: same complexity as INTERVAL MAPPING
- All problem instances NP-complete on *Fully Heterogeneous* platforms

• Chains-on-chains + homogeneous communications: polynomial 😳

• Chains-on-chains + different-speed processors: NP-complete 🙁

A B A A B A

• Chains-on-chains + homogeneous communications: polynomial 😳

• Chains-on-chains + different-speed processors: NP-complete 🙂

∃ ► < ∃ ►</p>

IntroductionFrameworkComplexityHeuristicsExperimentsLPConclusionOne-to-one/Comm.Hom.:binary search algorithm

- \bullet Work with fastest n processors, numbered ${\it P}_1$ to ${\it P}_n,$ where $s_1 \leq s_2 \leq \ldots \leq s_n$
- Mark all stages \mathcal{S}_1 to \mathcal{S}_n as free
- **For** *u* = 1 **to** n
 - Pick up any free stage \mathcal{S}_k s.t. $\delta_{k-1}/b + w_k/s_u + \delta_k/b \leq T_{\mathsf{period}}$
 - Assign \mathcal{S}_k to \mathcal{P}_u , and mark \mathcal{S}_k as already assigned
 - If no stage found return "failure"
- Proof: exchange argument

IntroductionFrameworkComplexityHeuristicsExperimentsLPConclusionOne-to-one/Comm.Hom.:binary search algorithm

- \bullet Work with fastest n processors, numbered ${\it P}_1$ to ${\it P}_n,$ where $s_1 \leq s_2 \leq \ldots \leq s_n$
- $\bullet\,$ Mark all stages \mathcal{S}_1 to \mathcal{S}_n as free
- **For** *u* = 1 **to** n
 - Pick up any free stage \mathcal{S}_k s.t. $\delta_{k-1}/b + w_k/s_u + \delta_k/b \leq T_{\mathsf{period}}$
 - Assign \mathcal{S}_k to \mathcal{P}_u , and mark \mathcal{S}_k as already assigned
 - If no stage found return "failure"
- Proof: exchange argument

Introduction Framework Complexity Heuristics Experiments LP Conclusion Interval, Fully Hom.: dynamic programming algorithm

- c(i, j, k): optimal period to map stages S_i to S_j using exactly k processors
- Goal: $\min_{1 \le k \le p} c(1, n, k)$

$$c(i,j,k) = \min_{\substack{q+r=k\\ 1 \le q \le k-1\\ 1 \le r \le k-1}} \left\{ \min_{\substack{i \le \ell \le j-1\\ i \le \ell \le j-1}} \{ \max(c(i,\ell,q), c(\ell+1,j,r)) \} \right\}$$

$$c(i,j,1) = \frac{\delta_{i-1}}{b} + \frac{\sum_{k=i}^{j} w_k}{s} + \frac{\delta_j}{b}$$
$$c(i,j,k) = +\infty \quad \text{if} \quad k > j - i + 1$$

• Proof: search over all possible partitionings into two subintervals, using every possible number of processors for each interval

• Complexity:
$$O(n^3p^2)$$

MAO 18/41

Introduction Framework Complexity Heuristics Experiments LP Conclusion Interval, Fully Hom.: dynamic programming algorithm

- c(i, j, k): optimal period to map stages S_i to S_j using exactly k processors
- Goal: $\min_{1 \le k \le p} c(1, n, k)$

$$c(i,j,k) = \min_{\substack{q+r=k\\1 \le q \le k-1\\1 \le r \le k-1}} \left\{ \min_{\substack{i \le \ell \le j-1\\i \le \ell \le j-1}} \{ \max(c(i,\ell,q), c(\ell+1,j,r)) \} \right\}$$

$$c(i,j,1) = \frac{\delta_{i-1}}{b} + \frac{\sum_{k=i}^{j} w_k}{s} + \frac{\delta_j}{b}$$
$$c(i,j,k) = +\infty \quad \text{if} \quad k > j - i + 1$$

• Proof: search over all possible partitionings into two subintervals, using every possible number of processors for each interval

• Complexity:
$$O(n^3p^2)$$

MAO 18/41

> < E > < E >

Introduction Framework Complexity Heuristics Experiments LP Conclusion Interval, Fully Hom.: dynamic programming algorithm

- c(i, j, k): optimal period to map stages S_i to S_j using exactly k processors
- Goal: $\min_{1 \le k \le p} c(1, n, k)$

$$c(i,j,k) = \min_{\substack{q+r=k\\1 \le q \le k-1\\1 \le r \le k-1}} \left\{ \min_{\substack{i \le \ell \le j-1\\i \le \ell \le j-1}} \{ \max(c(i,\ell,q), c(\ell+1,j,r)) \} \right\}$$

$$c(i,j,1) = \frac{\delta_{i-1}}{b} + \frac{\sum_{k=i}^{j} w_k}{s} + \frac{\delta_j}{b}$$
$$c(i,j,k) = +\infty \quad \text{if} \quad k > j - i + 1$$

• Proof: search over all possible partitionings into two subintervals, using every possible number of processors for each interval

• Complexity:
$$O(n^3p^2)$$

MAO 18/41

Complexity Introduction Framework Interval, Fully Hom.: dynamic programming algorithm

- c(i, j, k): optimal period to map stages S_i to S_i using exactly k processors
- Goal: $\min_{1 \le k \le n} c(1, n, k)$

$$c(i,j,k) = \min_{\substack{q+r=k\\1 \le q \le k-1\\1 \le r \le k-1}} \left\{ \min_{\substack{i \le \ell \le j-1\\i \le \ell \le j-1}} \{ \max(c(i,\ell,q), c(\ell+1,j,r)) \} \right\}$$

$$c(i,j,1) = \frac{\delta_{i-1}}{b} + \frac{\sum_{k=i}^{j} w_k}{s} + \frac{\delta_j}{b}$$
$$c(i,j,k) = +\infty \quad \text{if} \quad k > j - i + 1$$

- Proof: search over all possible partitionings into two subintervals, using every possible number of processors for each interval
- Complexity: $O(n^3p^2)$

MAO

18/41

• Reduction from MINIMUM METRIC BOTTLENECK WANDERING SALESPERSON PROBLEM

∃ ► < ∃ ►</p>

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Outline						

3 Heuristics

Experiments

5 Linear programming formulation

-

< ∃ > <

- Target clusters: *Communication Homogeneous* platforms and INTERVAL MAPPING
- $L = \lceil n/p \rceil$ consecutive stages per processor: set of intervals fixed
- $\lceil n/L \rceil$ processors used
- ONE-TO-ONE MAPPING when $n \leq p \ (L = 1)$
- Rule applied in all greedy heuristics except random interval length

• • = • • = •

Introduction Framework Heuristics Experiments Greedy heuristics (2/2)H1a-GR: random – Random choice of a free processor for each interval H1b-GRIL: random interval length – Idem with random interval sizes: average length L, $1 \leq \text{length} \leq 2L - 1$ H2-GSW: biggest $\sum w$ – Place interval with most computations on fastest processor H3-GSD: biggest $\delta_{in} + \delta_{out}$ – Intervals are sorted by communications ($\delta_{in} + \delta_{out}$) *in*: first stage of interval; out - 1: last one H4-GP: biggest period on fastest processor - Balancing computation and communication: processors sorted by decreasing speed s_{ij} ; for current processor u_{ij} choose interval with biggest period $(\delta_{in} + \delta_{out})/b + \sum_{i \in Interval} w_i/s_{\mu}$ < 回 ト < 三 ト < 三 ト

MAO 22/41

Introduction Framework Complexity Heuristics Experiments LP Conclusion
Sophisticated heuristics

H5-BS121: binary search for ONE-TO-ONE MAPPING – optimal algorithm for ONE-TO-ONE MAPPING. When p < n, application cut in fixed intervals of length *L*.

H6-SPL: splitting intervals – Processors sorted by decreasing speed, all stages to first processor. At each step, select used proc j with largest period, split its interval (give fraction of stages to j'): minimize max(period(j), period(j')) and split if maximum period improved.

H7a-BSL and H7b-BSC: binary search (longest/closest) – Binary search on period P: start with stage s = 1, build intervals (s, s') fitting on processors. For each u, and each $s' \ge s$, compute period (s..s', u) and check whether it is smaller than P. **H7a**: maximizes s'; **H7b**: chooses the closest period.

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Outline						

1 Framework

2 Complexity results

3 Heuristics

4 Experiments

5 Linear programming formulation

6 Conclusion

3 🕨 🖌 3

- Assess performance of polynomial heuristics
- Random applications, n = 1 to 50 stages
- Random platforms, p = 10 and p = 100 processors
- b = 10 (comm. hom.), proc. speed between 1 and 20
- Relevant parameters: ratios $\frac{\delta}{b}$ and $\frac{w}{s}$
- Average over 100 similar random appli/platform pairs

- Assess performance of polynomial heuristics
- Random applications, n = 1 to 50 stages
- $\bullet\,$ Random platforms, p=10 and p=100 processors
- b = 10 (comm. hom.), proc. speed between 1 and 20
- Relevant parameters: ratios $\frac{\delta}{b}$ and $\frac{w}{s}$
- Average over 100 similar random appli/platform pairs

- Assess performance of polynomial heuristics
- Random applications, n = 1 to 50 stages
- $\bullet\,$ Random platforms, p=10 and p=100 processors
- b = 10 (comm. hom.), proc. speed between 1 and 20
- Relevant parameters: ratios $\frac{\delta}{b}$ and $\frac{w}{s}$
- Average over 100 similar random appli/platform pairs

 Introduction
 Framework
 Complexity
 Heuristics
 Experiments
 LP
 Conclusion

 Experiment 1 - balanced comm/comp, hom comm

 Conclusion

• $\delta_i = 10$, computation time between 1 and 20

- 10 processors
- 100 processors

• • = • • = •

26/41

IntroductionFrameworkComplexityHeuristicsExperimentsLPConclusionExperiment 1 - balanced comm/comp, hom comm

- $\delta_i = 10$, computation time between 1 and 20
- 10 processors
- 100 processors

IntroductionFrameworkComplexityHeuristicsExperimentsLPConclusionExperiment 1 - balanced comm/comp, hom comm

- $\delta_i = 10$, computation time between 1 and 20
- 10 processors
- 100 processors

Introduction Framework Complexity Heuristics Experiments LP Conclusion Experiment 2 - balanced comm/comp, het comm

- communication time between 1 and 100
- computation time between 1 and 20

 Introduction
 Framework
 Complexity
 Heuristics
 Experiments
 LP
 Conclusion

 Experiment 2 - balanced comm/comp, het comm

 Conclusion

- communication time between 1 and 100
- computation time between 1 and 20

Yves.Robert@ens-lyon.fr

IntroductionFrameworkComplexityHeuristicsExperimentsLPConclusionExperiment 2 - balanced comm/comp, het comm

- communication time between 1 and 100
- computation time between 1 and 20

Yves.Robert@ens-lyon.fr

Introduction Framework Complexity Heuristics Experiments LP Conclusion Experiment 3 - large computations

- communication time between 1 and 20
- computation time between 10 and 1000

э

Introduction Framework Complexity Heuristics Experiments LP Conclusion Experiment 3 - large computations

- communication time between 1 and 20
- computation time between 10 and 1000

Introduction Framework Complexity Heuristics Experiments LP Conclusion Experiment 3 - large computations <td

- communication time between 1 and 20
- computation time between 10 and 1000

Yves.Robert@ens-lyon.fr

MAO 28/41

- communication time between 1 and 20
- computation time between 0.01 and 10

3 🕨 🖌 3

Introduction Framework Complexity Heuristics Experiments LP Conclusion Experiment 4 - computations Complexity Heuristics Experiments LP Conclusion

- communication time between 1 and 20
- computation time between 0.01 and 10

Yves.Robert@ens-lyon.fr

Introduction Framework Complexity Heuristics Experiments LP Conclusion Experiment 4 - computations

- communication time between 1 and 20
- computation time between 0.01 and 10

Yves.Robert@ens-lyon.fr

MAO 29/41

- Much more efficient than random mappings
- Three dominant heuristics for different cases
- Insignificant communications (hom. or small) and many processors: H5-BS121 (ONE-TO-ONE MAPPING)
- Insignificant communications (hom. or small) and few processors: H7b-BSC (clever choice where to split)
- Important communications (het. or big): H6-SPL (splitting choice relevant for any number of processors)

- Much more efficient than random mappings
- Three dominant heuristics for different cases
- Insignificant communications (hom. or small) and many processors: H5-BS121 (ONE-TO-ONE MAPPING)
- Insignificant communications (hom. or small) and few processors: H7b-BSC (clever choice where to split)
- Important communications (het. or big): H6-SPL (splitting choice relevant for any number of processors)

MAO 30/41

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Outline						

1 Framework

2 Complexity results

3 Heuristics

4 Experiments

5 Linear programming formulation

6 Conclusion

3 🕨 🖌 3

- Integer LP to solve INTERVAL MAPPING on Fully Heterogeneous platforms
- Many integer variables: no efficient algorithm to solve
- Approach limited to small problem instances
- Absolute performance of the heuristics for such instances

- $x_{k,u}$: 1 if S_k on P_u (0 otherwise)
- $y_{k,u}$: 1 if S_k and S_{k+1} both on P_u (0 otherwise)
- $z_{k,u,v}$: 1 if S_k on P_u and S_{k+1} on P_v (0 otherwise)
- first_u and last_u: integer denoting first and last stage assigned to P_u (to enforce interval constraints)
- *T*_{period}: period of the pipeline
- Objective function: minimize T_{period}

MAO 33/41

.

- $x_{k,u}$: 1 if S_k on P_u (0 otherwise)
- $y_{k,u}$: 1 if S_k and S_{k+1} both on P_u (0 otherwise)
- $z_{k,u,v}$: 1 if S_k on P_u and S_{k+1} on P_v (0 otherwise)
- first_u and last_u: integer denoting first and last stage assigned to P_u (to enforce interval constraints)
- T_{period} : period of the pipeline
- Objective function: minimize T_{period}

· · · · · · · · ·

- $x_{k,u}$: 1 if S_k on P_u (0 otherwise)
- $y_{k,u}$: 1 if S_k and S_{k+1} both on P_u (0 otherwise)
- $z_{k,u,v}$: 1 if S_k on P_u and S_{k+1} on P_v (0 otherwise)
- first_u and last_u: integer denoting first and last stage assigned to P_u (to enforce interval constraints)
- T_{period} : period of the pipeline
- Objective function: minimize T_{period}

• • = • • = •

Introduction Framework Complexity Heuristics Experiments LP Conclusion Linear program: constraints

•
$$\forall k \in [0..n+1], \qquad \sum_{u} x_{k,u} = 1$$

- $\forall k \in [0..n], \qquad \sum_{u \neq v} z_{k,u,v} + \sum_{u} y_{k,u} = 1$
- $\forall k \in [0..n], \forall u, v \in [1..p] \cup \{in, out\}, u \neq v, x_{k,u} + x_{k+1,v} \le 1 + z_{k,u,v}$
- $\forall k \in [0..n], \forall u \in [1..p] \cup \{in, out\}, \quad x_{k,u} + x_{k+1,u} \le 1 + y_{k,u}$
- $\forall k \in [1..n], \forall u \in [1..p],$ first_u $\leq k.x_{k,u} + n.(1 x_{k,u})$
- $\forall k \in [1..n], \forall u \in [1..p],$ last_u $\geq k.x_{k,u}$
- $\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v,$ last_u $\leq k.z_{k,u,v} + n.(1 - z_{k,u,v})$
- $\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v, \text{ first}_v \geq (k+1).z_{k,u,v}$

$$\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b_{t,u}} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} + \left(\sum_{v \neq u} \frac{\delta_k}{b_{u,v}} z_{k,u,v} \right) \right\} \leq T_{\mathsf{period}}$$

過 ト イヨト イヨト

Introduction Framework Complexity Heuristics Experiments LP Conclusion Linear program: constraints

•
$$\forall k \in [0..n + 1], \qquad \sum_{u} x_{k,u} = 1$$

• $\forall k \in [0..n], \qquad \sum_{u \neq v} z_{k,u,v} + \sum_{u} y_{k,u} = 1$
• $\forall k \in [0..n], \forall u, v \in [1..p] \cup \{in, out\}, u \neq v, x_{k,u} + x_{k+1,v} \leq 1 + z_{k,u,v}$
• $\forall k \in [0..n], \forall u \in [1..p] \cup \{in, out\}, \qquad x_{k,u} + x_{k+1,u} \leq 1 + y_{k,u}$
• $\forall k \in [1..n], \forall u \in [1..p], \qquad \text{first}_{u} \leq k.x_{k,u} + n.(1 - x_{k,u})$
• $\forall k \in [1..n], \forall u \in [1..p], \qquad \text{last}_{u} \geq k.x_{k,u}$
• $\forall k \in [1..n - 1], \forall u, v \in [1..p], u \neq v, \qquad \text{last}_{u} \leq k.z_{k,u,v} + n.(1 - z_{k,u,v})$
• $\forall k \in [1..n - 1], \forall u, v \in [1..p], u \neq v, \qquad \text{first}_{v} \geq (k + 1).z_{k,u,v}$
 $\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b_{t,u}} z_{k-1,t,u} \right) + \frac{w_{k}}{s_{u}} x_{k,u} + \left(\sum_{v \neq u} \frac{\delta_{k}}{b_{u,v}} z_{k,u,v} \right) \right\} \leq \tau_{\text{period}}$

(a)

Introduction Framework Complexity Heuristics Experiments LP Conclusion Linear program: constraints

•
$$\forall k \in [0..n + 1], \qquad \sum_{u \neq v} x_{k,u} = 1$$

• $\forall k \in [0..n], \qquad \sum_{u \neq v} z_{k,u,v} + \sum_{u} y_{k,u} = 1$
• $\forall k \in [0..n], \forall u, v \in [1..p] \cup \{in, out\}, u \neq v, x_{k,u} + x_{k+1,v} \leq 1 + z_{k,u,v}$
• $\forall k \in [0..n], \forall u \in [1..p] \cup \{in, out\}, \qquad x_{k,u} + x_{k+1,u} \leq 1 + y_{k,u}$
• $\forall k \in [1..n], \forall u \in [1..p], \qquad \text{first}_{u} \leq k.x_{k,u} + n.(1 - x_{k,u})$
• $\forall k \in [1..n], \forall u \in [1..p], \qquad \text{last}_{u} \geq k.x_{k,u}$
• $\forall k \in [1..n - 1], \forall u, v \in [1..p], u \neq v, \qquad \text{last}_{u} \leq k.z_{k,u,v} + n.(1 - z_{k,u,v})$
• $\forall k \in [1..n - 1], \forall u, v \in [1..p], u \neq v, \qquad \text{first}_{v} \geq (k + 1).z_{k,u,v}$
 $\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b_{t,u}} z_{k-1,t,u} \right) + \frac{w_{k}}{s_{u}} x_{k,u} + \left(\sum_{v \neq u} \frac{\delta_{k}}{b_{u,v}} z_{k,u,v} \right) \right\} \leq \tau_{\text{period}}$

(a)

- $O(np^2)$ variables, as many constraints
- Experiments only on small problem instances
- Average over 10 instances of each application
- Use GLPK
- Largest experiment: p = 8, n = 4: 14-hour computation time
- Parameters similar to Experiment 1: homogeneous communications and balanced comm/comp

MAO 35/41

- $O(np^2)$ variables, as many constraints
- Experiments only on small problem instances
- Average over 10 instances of each application
- Use GLPK
- Largest experiment: p = 8, n = 4: 14-hour computation time
- Parameters similar to Experiment 1: homogeneous communications and balanced comm/comp

IntroductionFrameworkComplexityHeuristicsExperimentsLPConclusionLinear program:experiment p = 8

Yves.Robert@ens-lyon.fr

MAO 36/41

n	LP	H5-BS121	H7b-BSC
1	2.576857	2.576882	2.576882
2	2.749913	2.749934	2.749934
3	2.879871	2.879900	2.883072
4	2.760960	2.760981	2.770690

(日) (同) (三) (三)

Introduction Framework Complexity Heuristics Experiments LP Conclusion Linear program: experiment p = 4

Homogeneous communications (Experiment 1)

H7b very close to the optimal (< 3% error)

Yves.Robert@ens-lyon.fr

(日) (同) (三) (三)

Introduction Framework Complexity Heuristics Experiments LP Conclusion Linear program: experiment p = 4

Heterogeneous communications (Experiment 2)

H6 very close to the optimal (< 0.05% error)

Yves.Robert@ens-lyon.fr

(日) (同) (三) (三)

Introduction	Framework	Complexity	Heuristics	Experiments	LP	Conclusion
Outline						

Framework

2 Complexity results

Experiments

5 Linear programming formulation

6 Conclusion

-

3 1 4

Scheduling task graphs on heterogeneous platforms- Acyclic task graphs scheduled on different speed processors [Topcuoglu et al.]. Communication contention: 1-port model [Beaumont et al.].

Mapping pipelined computations onto special-purpose architectures– FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Mapping pipelined computations onto clusters and grids- DAG [Taura et al.], DataCutter [Saltz et al.]

Mapping skeletons onto clusters and grids– Use of stochastic process algebra [Benoit et al.]

· · · · · · · · ·

Theoretical side – Complexity for different mapping strategies and different platform types

Practical side

- Optimal polynomial algorithm for ONE-TO-ONE MAPPING
- Design of several heuristics for INTERVAL MAPPING on *Communication Homogeneous*
- Comparison of their performance
- Linear program to assess the absolute performance of the heuristics, which turns out to be quite good

MAO 40/41

Short term

- Heuristics for *Fully Heterogeneous* platforms
- Extension to DAG-trees (a DAG which is a tree when un-oriented)
- Extension to stage replication
- LP with replication and DAG-trees

Longer term

- Real experiments on heterogeneous clusters, using an already-implemented skeleton library and MPI
- Comparison of effective performance against theoretical performance

MAO 41/41