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Why restrict to pipelines?

Chains-on-chains partitioning problem
- no communications
- identical processors

Extensions (done)
- with communications
- with heterogeneous processors/links
- goal: assess complexity, design heuristics

Extensions (current work)
- deal with DEALs
- deal with DAGs
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Chains-on-chains

Load-balance contiguous tasks

5 7 3 4 8 1 3 8 2 9 7 3 5 2 3 6

Back to Bokhari and Iqbal partitioning papers

See survey by Pinar and Aykanat, JPDC 64, 8 (2004)
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Rule of the game

Map each pipeline stage on a single processor (no deals)

Goal: minimize execution time

Several mapping strategies

S1 ... ...S2 Sk Sn

The pipeline application
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Rule of the game
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Goal: minimize execution time

Several mapping strategies

S1 ... ...S2 Sk Sn
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Goal: minimize execution time

Several mapping strategies
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Rule of the game

Map each pipeline stage on a single processor (no deals)

Goal: minimize execution time

Several mapping strategies

S1 ... ...S2 Sk Sn

General Mapping
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Major contributions

Theory Formal approach to the problem
Problem complexity
Integer linear program for exact resolution

Practice Heuristics for Interval Mapping on clusters
Experiments to compare heuristics and evaluate their
absolute performance
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Outline

1 Framework

2 Complexity results
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5 Linear programming formulation
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The application

... ...S2 Sk SnS1

w1 w2 wk wn

δ0 δ1 δk−1 δk δn

n stages Sk , 1 ≤ k ≤ n

Sk :

receives input of size δk−1 from Sk−1

performs wk computations
outputs data of size δk to Sk+1

S0 and Sn+1: virtual stages representing the outside world

Yves.Robert@ens-lyon.fr January 2007 Mapping pipeline skeletons MAO 8/ 41



Introduction Framework Complexity Heuristics Experiments LP Conclusion

The platform

Pout

Pv

sv

Pu

su

bv ,out

bu,v

bin,u

Pin soutsin

p processors Pu, 1 ≤ u ≤ p, fully interconnected

su: speed of processor Pu

bidirectional link linku,v : Pu → Pv , bandwidth bu,v

one-port model: each processor can either send, receive or
compute at any time-step

Pin: input data – Pout : output data

Yves.Robert@ens-lyon.fr January 2007 Mapping pipeline skeletons MAO 9/ 41



Introduction Framework Complexity Heuristics Experiments LP Conclusion

Different platforms

Fully Homogeneous – Identical processors (su = s) and links
(bu,v = b): typical parallel machines

Communication Homogeneous – Different-speed processors
(su 6= sv ), identical links (bu,v = b): networks of
workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, su 6= sv
and bu,v 6= bu′,v ′ : hierarchical platforms, grids
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Mapping problem: One-to-one Mapping

n ≤ p: map each stage Sk onto a distinct processor Palloc(k)

Period of Palloc(k): minimum delay between processing of two
consecutive tasks

v = alloc(k + 1)

SkSk−1 Sk+1

u = alloc(k)t = alloc(k − 1)

Cycle-time of Pu: cycleu =
δk−1

bt,u
+ wk

su
+ δk

bu,v

Optimization problem: find the allocation function
alloc : [1, n] → [1, p] which minimizes

Tperiod = max
1≤k≤n

cyclealloc(k)

(with alloc(0) = in and alloc(n + 1) = out)
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Mapping problem: Interval Mapping

Several consecutive stages onto the same processor

Increase computational load, reduce communications

Mandatory when p < n

Partition of [1..n] into m intervals Ij = [dj , ej ]
(with dj ≤ ej for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej + 1 for
1 ≤ j ≤ m − 1 and em = n)

Interval Ij mapped onto processor Palloc(j)

Tperiod = max
1≤j≤m

{
δdj−1

balloc(j−1),alloc(j)
+

∑ej

i=dj
wi

salloc(j)
+

δej

balloc(j),alloc(j+1)

}
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Mapping problem: General Mapping

Not suiting the one-port model very well: can always be
replaced by an Interval Mapping as good as the general
one for Communication Homogeneous platforms

Can be the optimal mapping for Fully Heterogeneous
platforms in some particular cases

More general, but requires threads and may lead to idle times
and races with the one-port model
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Outline

1 Framework

2 Complexity results

3 Heuristics

4 Experiments

5 Linear programming formulation

6 Conclusion
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Complexity results

Fully Hom. Comm. Hom.
One-to-one Mapping

Interval Mapping
General Mapping
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Complexity results
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Interval Mapping polynomial NP-complete

General Mapping same complexity as Interval

Binary search polynomial algorithm for One-to-one
Mapping

Dynamic programming algorithm for Interval Mapping on
Hom. platforms

General mapping: same complexity as Interval Mapping

All problem instances NP-complete on Fully Heterogeneous
platforms
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Back to chains-on-chains

Chains-on-chains + homogeneous communications:
polynomial ,

Chains-on-chains + different-speed processors:
NP-complete /
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One-to-one/Comm. Hom.: binary search algorithm

Work with fastest n processors, numbered P1 to Pn, where
s1 ≤ s2 ≤ . . . ≤ sn

Mark all stages S1 to Sn as free

For u = 1 to n

Pick up any free stage Sk s.t. δk−1/b + wk/su + δk/b ≤ Tperiod

Assign Sk to Pu, and mark Sk as already assigned
If no stage found return ”failure”

Proof: exchange argument

Yves.Robert@ens-lyon.fr January 2007 Mapping pipeline skeletons MAO 17/ 41



Introduction Framework Complexity Heuristics Experiments LP Conclusion

One-to-one/Comm. Hom.: binary search algorithm

Work with fastest n processors, numbered P1 to Pn, where
s1 ≤ s2 ≤ . . . ≤ sn

Mark all stages S1 to Sn as free

For u = 1 to n

Pick up any free stage Sk s.t. δk−1/b + wk/su + δk/b ≤ Tperiod

Assign Sk to Pu, and mark Sk as already assigned
If no stage found return ”failure”

Proof: exchange argument

Yves.Robert@ens-lyon.fr January 2007 Mapping pipeline skeletons MAO 17/ 41



Introduction Framework Complexity Heuristics Experiments LP Conclusion

Interval, Fully Hom.: dynamic programming algorithm

c(i , j , k): optimal period to map stages Si to Sj using exactly
k processors
Goal: min1≤k≤p c(1, n, k)

c(i , j , k) = min
q + r = k

1 ≤ q ≤ k − 1
1 ≤ r ≤ k − 1

{
min

i≤`≤j−1
{max (c(i , `, q), c(` + 1, j , r))}

}

c(i , j , 1) =
δi−1

b
+

∑j
k=i wk

s
+

δj

b

c(i , j , k) = +∞ if k > j − i + 1

Proof: search over all possible partitionings into two
subintervals, using every possible number of processors for
each interval

Complexity: O(n3p2)
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Heterogeneous platforms: NP-complete

Reduction from MINIMUM METRIC BOTTLENECK
WANDERING SALESPERSON PROBLEM

2
d(c1,c3)

Pin P1

P2

P3

P4

Pout

P1,2

P1,3

P1,4

P2,3

P3,4

P2,4

1

1

2
d(c2,c4)

2
d(c1,c4)

2
d(c1,c4)

2
d(c1,c2)

2
d(c1,c2)

2
d(c2,c4)

2
d(c1,c3)
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Greedy heuristics (1/2)

Target clusters: Communication Homogeneous platforms and
Interval Mapping

L = dn/pe consecutive stages per processor: set of intervals
fixed

dn/Le processors used

One-to-one Mapping when n ≤ p (L = 1)

Rule applied in all greedy heuristics except random interval
length
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Greedy heuristics (2/2)

H1a-GR: random – Random choice of a free processor for each
interval

H1b-GRIL: random interval length – Idem with random interval
sizes: average length L, 1 ≤ length ≤ 2L− 1

H2-GSW: biggest
∑

w – Place interval with most computations
on fastest processor

H3-GSD: biggest δin + δout – Intervals are sorted by
communications (δin + δout)
in: first stage of interval; out − 1: last one

H4-GP: biggest period on fastest processor – Balancing
computation and communication: processors sorted
by decreasing speed su; for current processor u,
choose interval with biggest period
(δin + δout)/b +

∑
i∈Interval wi/su
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Sophisticated heuristics

H5-BS121: binary search for One-to-one Mapping – optimal
algorithm for One-to-one Mapping. When p < n,
application cut in fixed intervals of length L.

H6-SPL: splitting intervals – Processors sorted by decreasing
speed, all stages to first processor. At each step,
select used proc j with largest period, split its
interval (give fraction of stages to j ′): minimize
max(period(j), period(j ′)) and split if maximum
period improved.

H7a-BSL and H7b-BSC: binary search (longest/closest) – Binary
search on period P: start with stage s = 1, build
intervals (s, s ′) fitting on processors. For each u, and
each s ′ ≥ s, compute period (s..s ′, u) and check
whether it is smaller than P. H7a: maximizes s ′;
H7b: chooses the closest period.
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Plan of experiments

Assess performance of polynomial heuristics

Random applications, n = 1 to 50 stages

Random platforms, p = 10 and p = 100 processors

b = 10 (comm. hom.), proc. speed between 1 and 20

Relevant parameters: ratios δ
b and w

s

Average over 100 similar random appli/platform pairs
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Experiment 1 - balanced comm/comp, hom comm

δi = 10, computation time between 1 and 20

10 processors

100 processors
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δi = 10, computation time between 1 and 20
10 processors
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Experiment 4 - computations
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computation time between 0.01 and 10
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Summary of experiments

Much more efficient than random mappings

Three dominant heuristics for different cases

Insignificant communications (hom. or small) and many
processors: H5-BS121 (One-to-one Mapping)

Insignificant communications (hom. or small) and few
processors: H7b-BSC (clever choice where to split)

Important communications (het. or big): H6-SPL (splitting
choice relevant for any number of processors)
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1 Framework

2 Complexity results
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4 Experiments
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Integer linear programming

Integer LP to solve Interval Mapping on Fully
Heterogeneous platforms

Many integer variables: no efficient algorithm to solve

Approach limited to small problem instances

Absolute performance of the heuristics for such instances

Yves.Robert@ens-lyon.fr January 2007 Mapping pipeline skeletons MAO 32/ 41



Introduction Framework Complexity Heuristics Experiments LP Conclusion

Linear program: variables

xk,u: 1 if Sk on Pu (0 otherwise)

yk,u: 1 if Sk and Sk+1 both on Pu (0 otherwise)

zk,u,v : 1 if Sk on Pu and Sk+1 on Pv (0 otherwise)

firstu and lastu: integer denoting first and last stage assigned
to Pu (to enforce interval constraints)

Tperiod: period of the pipeline

Objective function: minimize Tperiod
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Linear program: constraints

∀k ∈ [0..n + 1],
∑

u xk,u = 1

∀k ∈ [0..n],
∑

u 6=v zk,u,v +
∑

u yk,u = 1

∀k ∈ [0..n],∀u, v ∈ [1..p]∪{in, out}, u 6= v , xk,u +xk+1,v ≤ 1+zk,u,v

∀k ∈ [0..n],∀u ∈ [1..p] ∪ {in, out}, xk,u + xk+1,u ≤ 1 + yk,u

∀k ∈ [1..n],∀u ∈ [1..p], firstu ≤ k.xk,u + n.(1− xk,u)

∀k ∈ [1..n],∀u ∈ [1..p], lastu ≥ k.xk,u

∀k ∈ [1..n− 1],∀u, v ∈ [1..p], u 6= v ,
lastu ≤ k.zk,u,v + n.(1− zk,u,v )

∀k ∈ [1..n− 1],∀u, v ∈ [1..p], u 6= v , firstv ≥ (k + 1).zk,u,v

∀u ∈ [1..p],
nX

k=1

8<:
0@X

t 6=u

δk−1

bt,u
zk−1,t,u

1A +
wk

su
xk,u +

0@X
v 6=u

δk

bu,v
zk,u,v

1A9=; ≤ Tperiod
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Linear program: experiments

O(np2) variables, as many constraints

Experiments only on small problem instances

Average over 10 instances of each application

Use GLPK

Largest experiment: p = 8, n = 4: 14-hour computation time

Parameters similar to Experiment 1: homogeneous
communications and balanced comm/comp
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Linear program: experiment p = 8
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Linear program: experiment p = 8

n LP H5-BS121 H7b-BSC

1 2.576857 2.576882 2.576882
2 2.749913 2.749934 2.749934
3 2.879871 2.879900 2.883072
4 2.760960 2.760981 2.770690
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Linear program: experiment p = 4

Homogeneous communications (Experiment 1)

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  2  4  6  8  10

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=4) - Homogeneous case

Linear Program
H3-GreedySumDinDout
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

H7b very close to the optimal (< 3% error)

Yves.Robert@ens-lyon.fr January 2007 Mapping pipeline skeletons MAO 37/ 41



Introduction Framework Complexity Heuristics Experiments LP Conclusion

Linear program: experiment p = 4

Heterogeneous communications (Experiment 2)
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Related work

Scheduling task graphs on heterogeneous platforms– Acyclic task
graphs scheduled on different speed processors
[Topcuoglu et al.]. Communication contention:
1-port model [Beaumont et al.].

Mapping pipelined computations onto special-purpose architectures–
FPGA arrays [Fabiani et al.]. Fault-tolerance for
embedded systems [Zhu et al.]

Mapping pipelined computations onto clusters and grids– DAG
[Taura et al.], DataCutter [Saltz et al.]

Mapping skeletons onto clusters and grids– Use of stochastic
process algebra [Benoit et al.]
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Conclusion

Theoretical side – Complexity for different mapping strategies and
different platform types

Practical side

Optimal polynomial algorithm for One-to-one
Mapping
Design of several heuristics for Interval
Mapping on Communication Homogeneous
Comparison of their performance
Linear program to assess the absolute
performance of the heuristics, which turns out
to be quite good
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Future work

Short term

Heuristics for Fully Heterogeneous platforms
Extension to DAG-trees (a DAG which is a tree
when un-oriented)
Extension to stage replication
LP with replication and DAG-trees

Longer term

Real experiments on heterogeneous clusters,
using an already-implemented skeleton library
and MPI
Comparison of effective performance against
theoretical performance
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