
Minimizing the stretch
when scheduling flows
of divisible requests

Arnaud Legrand1 Alan Su2 Frédéric Vivien2,3

1Laboratoire ID-IMAG, Grenoble, France

2LIP, École normale supérieure de Lyon, France

3INRIA

November 24, 2005

The problem context

Outline

1 The problem context
The target application
Theoretical framework
Focusing on the uni-processor case
Choosing an objective function

2 The uniprocessor case

3 Simulation results

4 Conclusion

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context The target application

Problem context

I A distributed heterogeneous platform (cluster of clusters, grids, etc.).

I A collection of protein sequence databases:
I text files ranging in size from several megabytes to several gigabytes
I may be replicated across any number of nodes in the computational

platform
I not necessarily available to every computational node

I A workload composed of requests:
I comparisons of regular-expression patterns against sequences in a given

database
I each request is independent from the others
I request size varies depending on complexity of the patterns

Prototype application: GriPPS from l’Institut de Biologie et Chimie des
Protéines

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context The target application

Application analysis : divisible loads

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

B
lo

ck
 E

xe
cu

tio
n

Ti
m

e
(s

ec
.)

Sequence Block Size

GriPPS Execution Time

cirque exec time
grail exec time

griagecl01 exec time
home exec time

Preliminary analyses:

I benchmarks: variable size database partitions and a fixed motif set

I each benchmark run 10 times

I results justify a divisible workload model

I compact motif representation ⇒ communication times are negligible
compared to computation times

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context The target application

Application analysis : uniform computation model

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 T
im

e

Motif number

Normalized Execution Time

I Determining relative processor speed
I individual motif comparisons on reference computational resources
I average over 40 iterations
I normalize average execution times against a reference machine

I Task execution time estimated by
I benchmark execution time
I relative processor speed

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Theoretical framework

Definitions

I Jobs J1, ..., Jn

I Job Jj arrives in the system at time rj .
I Job Jj has a size pj .

I Machines M1, ..., Mm

I Machine Mi takes a time ci,j to process the job Jj .
I ci,j is infinite if the job Jj needs a database that is not available on the

machine Mi.

I Completion date C1, ..., Cn

I Flow of job Jj : Fj = Cj − rj (time spent in the system)

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Theoretical framework

Divisibility

I Each job is intrinsically divisible: at any given time different processors
can compare a given pattern against different parts of a same database.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Focusing on the uni-processor case

From divisible loads to the uni-processor case

Geometrical transformation of a divisible uniform problem
into a preemptive uni-processor problem.

P3

P2

P1

We only need to consider the uni-processor case...
Except that we are under the uniform case with availabilities.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Focusing on the uni-processor case

From divisible loads to the uni-processor case

Geometrical transformation of a divisible uniform problem
into a preemptive uni-processor problem.

1
c3

1
c2

{1
c1

{

of heterogeneity
Geometrical representation

P3

P2

P1

We only need to consider the uni-processor case...
Except that we are under the uniform case with availabilities.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Focusing on the uni-processor case

From divisible loads to the uni-processor case

Geometrical transformation of a divisible uniform problem
into a preemptive uni-processor problem.

1
c3

1
c2

{1
c1

{

Using uniformity
of heterogeneity

Geometrical representation

P3

P2

P1

We only need to consider the uni-processor case...
Except that we are under the uniform case with availabilities.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Focusing on the uni-processor case

From divisible loads to the uni-processor case

Geometrical transformation of a divisible uniform problem
into a preemptive uni-processor problem.

1
c3

1
c2

{1
c1

{

preemptive schedule
Equivalent monoprocessor

Pequiv

Using uniformity
of heterogeneity

Geometrical representation

P3

P2

P1

We only need to consider the uni-processor case...
Except that we are under the uniform case with availabilities.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Focusing on the uni-processor case

From divisible loads to the uni-processor case

Geometrical transformation of a divisible uniform problem
into a preemptive uni-processor problem.

1
c3

1
c2

{1
c1

{

preemptive schedule
Equivalent monoprocessor

Pequiv

Using uniformity
of heterogeneity

Geometrical representation

P3

P2

P1

We only need to consider the uni-processor case...
Except that we are under the uniform case with availabilities.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Focusing on the uni-processor case

From the uni-processor case to divisible loads

P1

{
P2

{
A: initial schedule

Simple rule to extend schedules deisgned for the uni-processor case:

1: while some processors are idle do
2: Select the job with the highest priority and distribute its

processing on all appropriate processors that are available.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Focusing on the uni-processor case

From the uni-processor case to divisible loads

P1

{
P2

{
A: initial schedule

P2

{P1

{

B: uniform processing

Simple rule to extend schedules deisgned for the uni-processor case:

1: while some processors are idle do
2: Select the job with the highest priority and distribute its

processing on all appropriate processors that are available.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Focusing on the uni-processor case

From the uni-processor case to divisible loads

P1

{
P2

{
A: initial schedule

P2

{P1

{

B: uniform processing C: restricted availability

P2

{P1

{

Simple rule to extend schedules deisgned for the uni-processor case:

1: while some processors are idle do
2: Select the job with the highest priority and distribute its

processing on all appropriate processors that are available.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Focusing on the uni-processor case

From the uni-processor case to divisible loads

P1

{
P2

{
A: initial schedule

P2

{P1

{

B: uniform processing C: restricted availability

P2

{P1

{

Simple rule to extend schedules deisgned for the uni-processor case:

1: while some processors are idle do
2: Select the job with the highest priority and distribute its

processing on all appropriate processors that are available.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Choosing an objective function

Choosing a fair objective function

I Makespan: maxj Cj .
Optimization of the machines utilization.
Release dates not taken into account.

I Average flow or sum-flow or average response time:
∑

j(Cj − rj).
Optimization from the user point-of-view.

Drawback: can lead to starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Advantage for the long jobs. Worst case optimization.

I Maximum weighted flow : maxj wj(Cj − rj).
Enables us to give more importance to short jobs.

Special case: the stretch: wj=1/job size.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Choosing an objective function

Choosing a fair objective function

I Makespan: maxj Cj .
Optimization of the machines utilization.
Release dates not taken into account.

I Average flow or sum-flow or average response time:
∑

j(Cj − rj).
Optimization from the user point-of-view.

Drawback: can lead to starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Advantage for the long jobs. Worst case optimization.

I Maximum weighted flow : maxj wj(Cj − rj).
Enables us to give more importance to short jobs.

Special case: the stretch: wj=1/job size.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Choosing an objective function

Choosing a fair objective function

I Makespan: maxj Cj .
Optimization of the machines utilization.
Release dates not taken into account.

I Average flow or sum-flow or average response time:
∑

j(Cj − rj).
Optimization from the user point-of-view.
Drawback: can lead to starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Advantage for the long jobs. Worst case optimization.

I Maximum weighted flow : maxj wj(Cj − rj).
Enables us to give more importance to short jobs.

Special case: the stretch: wj=1/job size.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Choosing an objective function

Choosing a fair objective function

I Makespan: maxj Cj .
Optimization of the machines utilization.
Release dates not taken into account.

I Average flow or sum-flow or average response time:
∑

j(Cj − rj).
Optimization from the user point-of-view.
Drawback: can lead to starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Advantage for the long jobs. Worst case optimization.

I Maximum weighted flow : maxj wj(Cj − rj).
Enables us to give more importance to short jobs.

Special case: the stretch: wj=1/job size.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Choosing an objective function

Choosing a fair objective function

I Makespan: maxj Cj .
Optimization of the machines utilization.
Release dates not taken into account.

I Average flow or sum-flow or average response time:
∑

j(Cj − rj).
Optimization from the user point-of-view.
Drawback: can lead to starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Advantage for the long jobs. Worst case optimization.

I Maximum weighted flow : maxj wj(Cj − rj).
Enables us to give more importance to short jobs.

Special case: the stretch: wj=1/job size.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Choosing an objective function

Choosing a fair objective function

I Makespan: maxj Cj .
Optimization of the machines utilization.
Release dates not taken into account.

I Average flow or sum-flow or average response time:
∑

j(Cj − rj).
Optimization from the user point-of-view.
Drawback: can lead to starvation.

I Maximum flow or maximum response time: maxj(Cj − rj).
No starvation. Advantage for the long jobs. Worst case optimization.

I Maximum weighted flow : maxj wj(Cj − rj).
Enables us to give more importance to short jobs.
Special case: the stretch: wj=1/job size.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Choosing an objective function

Minimizing the stretch

We focus on maximal and sum (average) stretch minimization.

Theorem

∆: ratio of the sizes of the largest and shortest jobs.
Consider any on-line algorithm of competitive ratio ρ(∆) < ∆ for the sum-
stretch minimization.

Then, there exists for this algorithm a sequence of jobs leading to starvation
and for which the obtained max-stretch is arbitrarily greater than the optimal
max-stretch.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The problem context Choosing an objective function

Minimizing the stretch

We focus on maximal and sum (average) stretch minimization.

Theorem

∆: ratio of the sizes of the largest and shortest jobs.
Consider any on-line algorithm of competitive ratio ρ(∆) < ∆ for the sum-
stretch minimization.

Then, there exists for this algorithm a sequence of jobs leading to starvation
and for which the obtained max-stretch is arbitrarily greater than the optimal
max-stretch.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case

Outline

1 The problem context

2 The uniprocessor case
Minimizing max- and sum-flow
Minimizing the sum-stretch
Minimizing the max-stretch : the off-line case
Minimizing the max-stretch : the online case

3 Simulation results

4 Conclusion

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing max- and sum-flow

Minimizing max- and sum-flow

I The max-flow is minimized by the first come, first serve rule.

I The sum-flow is minimized by the shortest remaining processing time
(SRPT) heuristic.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the sum-stretch

Minimizing the sum-stretch

I Complexity of off-line problem: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious extension : Shortest Weighted Remaining Processing Time.
At any time t, SWRPT schedules the job Jj which minimizes pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult
but simple approximation algorithms for the on-line framework.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the sum-stretch

Minimizing the sum-stretch

I Complexity of off-line problem: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious extension : Shortest Weighted Remaining Processing Time.
At any time t, SWRPT schedules the job Jj which minimizes pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult
but simple approximation algorithms for the on-line framework.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the sum-stretch

Minimizing the sum-stretch

I Complexity of off-line problem: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious extension : Shortest Weighted Remaining Processing Time.
At any time t, SWRPT schedules the job Jj which minimizes pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult
but simple approximation algorithms for the on-line framework.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the sum-stretch

Minimizing the sum-stretch

I Complexity of off-line problem: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious extension : Shortest Weighted Remaining Processing Time.
At any time t, SWRPT schedules the job Jj which minimizes pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult
but simple approximation algorithms for the on-line framework.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the sum-stretch

Minimizing the sum-stretch

I Complexity of off-line problem: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious extension : Shortest Weighted Remaining Processing Time.
At any time t, SWRPT schedules the job Jj which minimizes pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult
but simple approximation algorithms for the on-line framework.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the sum-stretch

Minimizing the sum-stretch

I Complexity of off-line problem: open.

I Polynomial Time Approximation Schemes (PTAS).

I The competitive ratio of any online algorithm is at least 1.19485.

I Shortest Remaining Processing Time is 2-competitive.

I Obvious extension : Shortest Weighted Remaining Processing Time.
At any time t, SWRPT schedules the job Jj which minimizes pjρt(j).
SWRPT is at best 2-competitive.

The off-line case looks difficult
but simple approximation algorithms for the on-line framework.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the off-line case

Existence of a schedule of given max-stretch (1)

Existence of a schedule of max-stretch S:

For each job Jj ,
Cj−rj

pj
6 S

Equivalent to a deadline scheduling problem where dj(S) = rj + pj × S

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the off-line case

Existence of a schedule of given max-stretch (2)

Set of all release dates and deadlines: {r1, ..., rn, d1, ..., dn}.

I1 I2 I3 I4 I5 I6 I7

r2 r3 d4 d3d2r1 d1 r4 time

processors

P1

P2

P3

These dates, when sorted, define a set of nint time intervals I1, ..., Inint , with
1 6 nint 6 2n− 1.

It = [inf It, sup It[

α
(t)
i,j : the fraction of job Jj processed by Mi during the interval It.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the off-line case

Existence of a schedule of given max-stretch (3)

1 Release dates:

∀i, ∀j,∀t, rj > sup It(S) ⇒ α
(t)
i,j = 0

2 Deadlines:

∀i, ∀j, ∀t, dj(S) 6 inf It(S) ⇒ α
(t)
i,j = 0

3 Resources constraints:

∀t,∀i,
∑

j

α
(t)
i,j .ci,j 6 sup It(S)− inf It(S)

4 Job completion:
∀j,

∑
t

∑
i

α
(t)
i,j = 1

Deciding whether this system has a solution can be done in polynomial time.

This system can be used to search for the best solution on a interval where
the relative order of release dates and deadlines is constant.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the off-line case

Existence of a schedule of given max-stretch (3)

1 Release dates:

∀i, ∀j,∀t, rj > sup It(S) ⇒ α
(t)
i,j = 0

2 Deadlines:

∀i, ∀j, ∀t, dj(S) 6 inf It(S) ⇒ α
(t)
i,j = 0

3 Resources constraints:

∀t,∀i,
∑

j

α
(t)
i,j .ci,j 6 sup It(S)− inf It(S)

4 Job completion:
∀j,

∑
t

∑
i

α
(t)
i,j = 1

Deciding whether this system has a solution can be done in polynomial time.

This system can be used to search for the best solution on a interval where
the relative order of release dates and deadlines is constant.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the off-line case

Minimizing the max-stretch in the off-line case

I We compute the nq special values of S for which one or more deadlines
equals a release date or another deadline (nq 6 n2 − n).

I Let S1,S2, ...,Snq be these special values of the objective, sorted.

I by definition, no intersections of key dates: ∀S,Si 6 S 6 Si+1 ⇒
ordering of release dates and deadlines is unchanged

I binary search on the set of special values of the objective, Si (using the
previously presented method with the objective interval [Si,Si+1])

I The algorithm runs in polynomial time.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the online case

Minimizing the max-stretch in the online case (1)

Lower bound on algorithm competitivity:

Theorem

For three lengths of jobs, there is no 1
2∆

√
2−1-competitive preemptive on-

line algorithm minimizing max-stretch, where ∆ is the ratio of the sizes of
the largest and shortest jobs.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the online case

Minimizing the max-stretch in the online case (2)

Two greedy approximation algorithms
√

∆-competitive:

1 Bender, Muthukrishnan, and Rajaraman (2002)
For any job Jj , define a pseudo-stretch Ŝj(t):

Ŝj(t) =

{ t−rj√
∆

if 1 6 pj 6
√

∆,

t−rj

∆ if
√

∆ < pj 6 ∆.

Then, jobs are scheduled by decreasing pseudo-stretches.

2 Bender, Chahrabarti, and Muthukrishnan (1998).
At each release date:

I Computes the off-line max-stretch S.
I Schedule the jobs earliest deadline first with deadlines defined by

√
∆×S.

Problem : only tries to optimize the most constraining jobs.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the online case

Minimizing the max-stretch in the online case (2)

Two greedy approximation algorithms
√

∆-competitive:

1 Bender, Muthukrishnan, and Rajaraman (2002)
For any job Jj , define a pseudo-stretch Ŝj(t):

Ŝj(t) =

{ t−rj√
∆

if 1 6 pj 6
√

∆,

t−rj

∆ if
√

∆ < pj 6 ∆.

Then, jobs are scheduled by decreasing pseudo-stretches.

2 Bender, Chahrabarti, and Muthukrishnan (1998).
At each release date:

I Computes the off-line max-stretch S.
I Schedule the jobs earliest deadline first with deadlines defined by

√
∆×S.

Problem : only tries to optimize the most constraining jobs.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the online case

Minimizing the max-stretch in the online case (2)

Two greedy approximation algorithms
√

∆-competitive:

1 Bender, Muthukrishnan, and Rajaraman (2002)
For any job Jj , define a pseudo-stretch Ŝj(t):

Ŝj(t) =

{ t−rj√
∆

if 1 6 pj 6
√

∆,

t−rj

∆ if
√

∆ < pj 6 ∆.

Then, jobs are scheduled by decreasing pseudo-stretches.

2 Bender, Chahrabarti, and Muthukrishnan (1998).
At each release date:

I Computes the off-line max-stretch S.
I Schedule the jobs earliest deadline first with deadlines defined by

√
∆×S.

Problem : only tries to optimize the most constraining jobs.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the online case

Minimizing the max-stretch in the online case (3)

1 Preempt the running job (if any).

2 Compute the best achievable max-stretch S, considering the decisions
already made.

3 With the deadlines and intervals defined by the max-stretch S, solve:

Minimize

nX
j=1

X
t

mX

i=1

α
(t)
i,j

!
sup It(S) + inf It(S)

2
,while8>>>>>>>><>>>>>>>>:

(1a) ∀i,∀j,∀t, rj > sup It(S) ⇒ α
(t)
i,j = 0

(1b) ∀i,∀j,∀t, dj(S) 6 inf It(S) ⇒ α
(t)
i,j = 0

(1c) ∀t,∀i,
X

j

α
(t)
i,j .ci,j 6 sup It(S)− inf It(S)

(1d) ∀j,
X

t

X
i

α
(t)
i,j = 1

(1)

(Heuristic approximation of a rational relaxation of the sum-stretch)

No guarantee !
Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

The uniprocessor case Minimizing the max-stretch : the online case

Conclusion

Minimizing the sum-stretch

I Offline case: looks difficult.

I Online case : rather easy.

Minimizing the max-stretch

I Offline case: polynomial time.

I Online case : very difficult.

and in practice ?

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

Simulation results

Outline

1 The problem context

2 The uniprocessor case

3 Simulation results

4 Conclusion

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

Simulation results

Simulation settings

I platforms of 3, 10, and 20 homogeneous clusters with 10 processors
each;

I applications with 3, 10, and 20 distinct reference databases;

I database availabilities of 30%, 60%, and 90% for each database;

I workload density factors of 0.75, 1.0, 1.25, 1.5, 2.0, and 3.0.

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

Simulation results

Simulation results

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0003 1.0167 1.6729 0.3825 4.4468
Online 1.0025 0.0127 2.0388 1.0806 0.0724 2.0343

Online-EDF 1.0024 0.0127 2.0581 1.0775 0.0708 2.0392
Online-EGDF 1.0781 0.1174 2.4053 1.0021 0.0040 1.0707

Bender98 1 1.0798 0.1315 2.0978 1.0024 0.0044 1.0530
SWRPT 1.0845 0.1235 2.5307 1.0002 0.0012 1.0458

SRPT 1.0939 0.1299 2.3741 1.0044 0.0055 1.0907
SPT 1.1147 0.1603 2.8295 1.0027 0.0054 1.1195

Bender02 3.4603 3.0260 28.4016 1.2053 0.2417 5.2022
MCT-Div 6.3385 7.4375 73.4019 1.3732 0.5628 11.0440

MCT 27.0124 20.1083 129.6119 50.9840 36.9797 157.8909

Table: Aggregate statistics over all 162 platform/application configurations

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

Conclusion

Outline

1 The problem context

2 The uniprocessor case

3 Simulation results

4 Conclusion

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

Conclusion

Conclusion

Minimizing the sum-stretch

I Offline case: looks difficult.

I Online case : rather easy.

Minimizing the max-stretch

I Offline case: polynomial time.

I Online case : very difficult.

In practice

I SWRPT and Online-EDF very good

I ... but SWRPT may lead to starvation

I sum-stretch not enough discriminating ?

Arnaud Legrand, Alan Su, Frédéric Vivien Minimizing the stretch

	The problem context
	The target application
	Theoretical framework
	Focusing on the uni-processor case
	Choosing an objective function

	The uniprocessor case
	Minimizing max- and sum-flow
	Minimizing the sum-stretch
	Minimizing the max-stretch : the off-line case
	Minimizing the max-stretch : the online case

	Simulation results
	Conclusion

