Offline and online master-worker scheduling of concurrent bags-of-tasks on heterogeneous platforms

Loris MARCHAL,

joint work with Anne BENOIT, Jean-François PINEAU, Yves ROBERT and Frédéric VIVIEN

> Laboratoire de l'Informatique du Parallélisme École Normale Supérieure de Lyon, France

graal working group, 28/02/2008

Object of the Study

- ► Bags-of-tasks application
 - ► independent tasks
 - large number of similar tasks
 - models embarrassingly parallel applications
 - argues for the use of wide distributed platforms

- ▶ Online scheduling
 - applications arrive at different time (release dates)
 - no knowledge on the future
 - no global makespan, try to lower the suffering of each user

Object of the Study

► Bags-of-tasks application

- ▶ independent tasks
- large number of similar tasks
- models embarrassingly parallel applications
- argues for the use of wide distributed platforms

Online scheduling

- applications arrive at different time (release dates)
- ▶ no knowledge on the future
- no global makespan, try to lower the suffering of each user

Building on our previous results

- ► Large number of tasks ⇒ steady-state scheduling
 - designed for large applications
 - suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS'06)

- optimal platform utilization: throughput maximization
- neglect transient phases (initialization/clean-up)
- ► Online scheduling ⇒ maximum stretch minimization
 - other metrics not suited

(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)

- stretch is a kind of price for sharing resources
- minimize the maximum stretch among applications: give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

Building on our previous results

- ► Large number of tasks ⇒ steady-state scheduling
 - designed for large applications
 - suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS'06)

- optimal platform utilization: throughput maximization
- neglect transient phases (initialization/clean-up)
- ► Online scheduling ⇒ maximum stretch minimization
 - other metrics not suited

(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)

- stretch is a kind of price for sharing resources
- minimize the maximum stretch among applications: give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

Building on our previous results

- ▶ Large number of tasks ⇒ steady-state scheduling
 - designed for large applications
 - suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS'06)

- optimal platform utilization: throughput maximization
- neglect transient phases (initialization/clean-up)
- ► Online scheduling ⇒ maximum stretch minimization
 - other metrics not suited

(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)

- stretch is a kind of price for sharing resources
- minimize the maximum stretch among applications: give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

- lacktriangle Suppose we want to reach the maximum stretch ${\cal S}$
- ► For a given application, we can compute its makespan "if it was alone": *MS*
- ► This gives a deadline:

$$\mathsf{deadline} = \mathsf{release} \; \mathsf{date} + \mathcal{S} imes \mathit{MS}$$

- Each application has now a release date and a deadline.
- ► Dates define intervals...
 where we can apply steady-state relaxation!

- lacktriangle Suppose we want to reach the maximum stretch ${\cal S}$
- ► For a given application, we can compute its makespan "if it was alone": *MS*
- ► This gives a deadline:

$$deadline = release date + S imes MS$$

- ► Each application has now a release date and a deadline.
- ► Dates define intervals... where we can apply steady-state relaxation!

- lacktriangle Suppose we want to reach the maximum stretch ${\cal S}$
- ► For a given application, we can compute its makespan "if it was alone": *MS*
- ► This gives a deadline:

$$deadline = release date + S \times MS$$

- ► Each application has now a release date and a deadline.
- ► Dates define intervals. . . where we can apply steady-state relaxation!

- lacktriangle Suppose we want to reach the maximum stretch ${\cal S}$
- ► For a given application, we can compute its makespan "if it was alone": *MS*
- ► This gives a deadline:

deadline = release date
$$+ S \times MS$$

- ► Each application has now a release date and a deadline.
- ▶ Dates define intervals... where we can apply steady-state relaxation!

- lacktriangle Suppose we want to reach the maximum stretch ${\cal S}$
- ► For a given application, we can compute its makespan "if it was alone": *MS*
- ► This gives a deadline:

$$deadline = release date + S \times MS$$

- ► Each application has now a release date and a deadline.
- ► Dates define intervals... where we can apply steady-state relaxation!

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Outline

Framework

With a single bag-of-task application

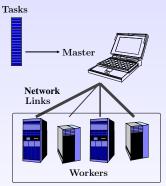
Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

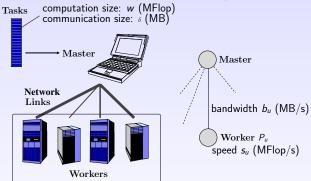
Simulations and Experiments

Conclusion

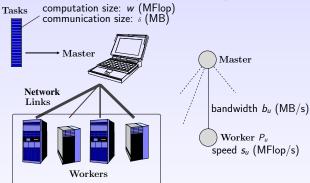


- Bunch of identical tasks
- ▶ Computing optimal makespan: already difficult problem
- ► Steady-state relaxation to get a lower bound

- ▶ Bunch of identical tasks
- ► Computing optimal makespan: already difficult problem
- ► Steady-state relaxation to get a lower bound



- ▶ Bunch of identical tasks
- ▶ Computing optimal makespan: already difficult problem
- ► Steady-state relaxation to get a lower bound



- Bunch of identical tasks
- ► Computing optimal makespan: already difficult problem
- ► Steady-state relaxation to get a lower bound

- Bunch of identical tasks
- Computing optimal makespan: already difficult problem
- ▶ Steady-state relaxation to get a lower bound

Single bag-of-task application – steady-state

Motivations:

- Assume the number of tasks is huge
- ► Forget about makespan (meaningless)
- ► Concentrate on throughput (fluid framework)

How it works:

- ► Consider average values: "master sends 5.3 tasks per second to worker 3"
- ▶ Write constraints on these variables
- ► Optimize total throughput under these constraints (with the help of linear programming)
- ► Reconstruct near-optimal schedule from average values (we skip this step for now)

Single bag-of-task application – steady-state

Motivations:

- Assume the number of tasks is huge
- ► Forget about makespan (meaningless)
- Concentrate on throughput (fluid framework)

How it works:

- ► Consider average values: "master sends 5.3 tasks per second to worker 3"
- Write constraints on these variables
- Optimize total throughput under these constraints (with the help of linear programming)
- Reconstruct near-optimal schedule from average values (we skip this step for now)

Single bag-of-task application – steady-state

Motivations:

- Assume the number of tasks is huge
- ► Forget about makespan (meaningless)
- Concentrate on throughput (fluid framework)

How it works:

- ► Consider average values: "master sends 5.3 tasks per second to worker 3"
- Write constraints on these variables
- Optimize total throughput under these constraints (with the help of linear programming)
- Reconstruct near-optimal schedule from average values (we skip this step for now)

Single bag-of-task application – linear program

$$\begin{cases} \text{MAXIMIZE } \rho = \sum_{u=1}^{p} \rho_{u} \\ \text{SUBJECT TO} \\ \rho_{u} \frac{w}{s_{u}} \leq 1 \\ \rho_{u} \frac{\delta}{b_{u}} \leq 1 \end{cases} \qquad \begin{aligned} \rho_{u} \text{: throughput of worker } P_{u} \\ \rho_{:} \text{ Total throughput} \\ \sum_{u=1}^{p} \rho_{u} \frac{\delta}{\mathcal{B}} \leq 1 \end{aligned}$$

Analytical solution

$$\rho = \min \left\{ \frac{\mathcal{B}}{\delta}, \sum_{u=1}^{p} \min \left\{ \frac{s_u}{w}, \frac{b_u}{w} \right\} \right\}.$$

Single bag-of-task application – linear program

$$\begin{cases} \text{MAXIMIZE } \rho = \sum_{u=1}^{p} \rho_{u} \\ \text{SUBJECT TO} \\ \rho_{u} \frac{w}{s_{u}} \leq 1 \\ \rho_{u} \frac{\delta}{b_{u}} \leq 1 \end{cases} \qquad \begin{array}{c} \rho_{u} \text{: throughput of worker } P_{u} \\ \rho_{v} \frac{\delta}{b_{u}} \leq 1 \\ \sum_{u=1}^{p} \rho_{u} \frac{\delta}{\mathcal{B}} \leq 1 \end{cases}$$

Analytical solution

$$\rho = \min \left\{ \frac{\mathcal{B}}{\delta}, \sum_{u=1}^{p} \min \left\{ \frac{s_u}{w}, \frac{b_u}{w} \right\} \right\}.$$

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Offline multi-application – framework

For each application k (task of sizes $w^{(k)}$, $\delta^{(k)}$), we have:

- a release date
- ▶ the optimal throughput (alone): $\rho^{*(k)}$
- \sim a bound on the makespan alone:

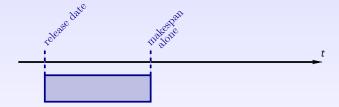
$$MS^{(k)} \ge \frac{\text{number of tasks}}{\text{optimal throughput}} = \frac{\Pi^{(k)}}{\rho^{*(k)}}$$

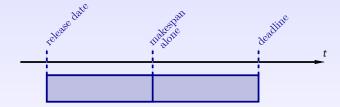
▶ not only a lower bound, rather an approximation...

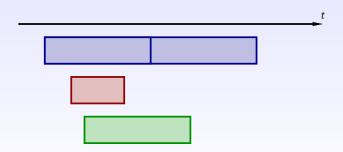
We try to reach stretch S:

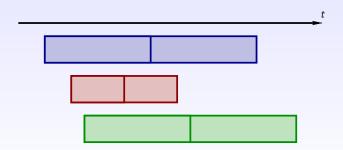
► deadline:

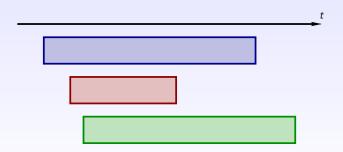
$$\mathsf{deadline}^{(k)} = \mathsf{release} \; \mathsf{date}^{(k)} + \mathcal{S} imes rac{\Pi^{(k)}}{
ho^{*(k)}}$$

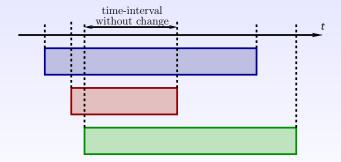












Resolution for a target stretch ${\mathcal S}$

New variables:

- ightharpoonup communication throughput $ho_{M o u}^{(k)}(t_j,t_{j+1})$
- computation throughput $\rho_u^{(k)}(t_j, t_{j+1})$
- ▶ state of buffers: $B_u^{(k)}(t_j)$ (number of non-executed tasks at time t_j)

New constraints:

- ► Complex (but straightforward) conservation laws between throughputs and buffer state details
- Assert that all tasks of an application are treated.
- Resource limitations

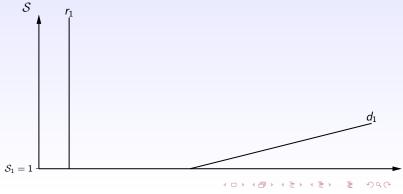
Set of linear constraints, defining a convex K(S).

$$K(S)$$
 non-empty $\Leftrightarrow S$ feasible

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- ▶ Basic binary search (with precision ϵ), or
- ▶ Involved search among stretch-intervals:

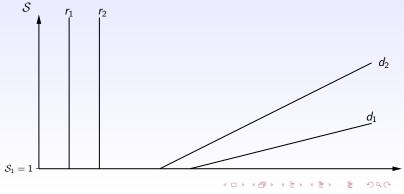
$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$



We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- ▶ Basic binary search (with precision ϵ), or
- ▶ Involved search among stretch-intervals:

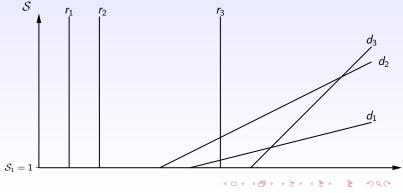
$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$



We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- ▶ Basic binary search (with precision ϵ), or
- ▶ Involved search among stretch-intervals:

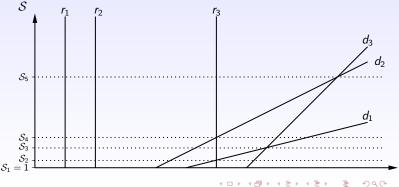
$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$



We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- ▶ Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$

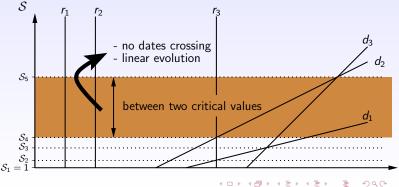


Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- ▶ Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$



- ▶ Consider a stretch-interval between two critical values $[S_a; S_b]$
- ▶ Deadlines have a linear evolution
- ► Everything is linear !?

- $T_{\mathrm{end}}, T_{\mathrm{start}}$: linear function in \mathcal{S}
- → quadratic constrains ⑤
- Switch from throughput to amount variables:

$$A_{M \to u}^{(k)}(t_j, t_{j+1}) = \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j)$$

$$A_u^{(k)}(t_j, t_{j+1}) = \rho_u^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j)$$

► All the constraints are once again linear ©

- ▶ Consider a stretch-interval between two critical values $[S_a; S_b]$
- ▶ Deadlines have a linear evolution
- ► Everything is linear !?

$$ho_{M o u}^{(k)}(t_j, t_{j+1}) imes (T_{\mathsf{end}} - T_{\mathsf{start}})$$

- $T_{\rm end}$, $T_{\rm start}$: linear function in S
- Switch from throughput to amount variables:

$$A_{M \to u}^{(k)}(t_j, t_{j+1}) = \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j)$$

$$A_u^{(k)}(t_j, t_{j+1}) = \rho_u^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j)$$

► All the constraints are once again linear ⊕

- ▶ Consider a stretch-interval between two critical values $[S_a; S_b]$
- ▶ Deadlines have a linear evolution
- ► Everything is linear !? Not really: when computing what receives a buffer during a time-interval

$$ho_{M o u}^{(k)}(t_j,t_{j+1}) imes (T_{\mathsf{end}}-T_{\mathsf{start}})$$

 $T_{\rm end}$, $T_{\rm start}$: linear function in $S \sim$ quadratic constrains \odot

▶ Switch from *throughput* to *amount* variables:

$$A_{M \to u}^{(k)}(t_j, t_{j+1}) = \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j)$$

$$A_{u}^{(k)}(t_j, t_{j+1}) = \rho_{u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j)$$

► All the constraints are once again linear © • details

- lacktriangle Consider a stretch-interval between two critical values $[S_a; S_b]$
- ▶ Deadlines have a linear evolution
- ► Everything is linear !? Not really: when computing what receives a buffer during a time-interval:

$$\rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (T_{\mathsf{end}} - T_{\mathsf{start}})$$

 $T_{\text{end}}, T_{\text{start}}$: linear function in $S \sim$ quadratic constrains \odot

► Switch from *throughput* to *amount* variables:

$$A_{M \to u}^{(k)}(t_j, t_{j+1}) = \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j)$$

$$A_{u}^{(k)}(t_i, t_{j+1}) = \rho_{u}^{(k)}(t_i, t_{j+1}) \times (t_{j+1} - t_j)$$

► All the constraints are once again linear © ▶ details

- ▶ Consider a stretch-interval between two critical values $[S_a; S_b]$
- ▶ Deadlines have a linear evolution
- ► Everything is linear !? Not really: when computing what receives a buffer during a time-interval:

$$\rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (T_{\mathsf{end}} - T_{\mathsf{start}})$$

 $T_{\rm end}, T_{\rm start}$: linear function in $S \sim$ quadratic constrains \odot

Switch from throughput to amount variables:

$$A_{M\to u}^{(k)}(t_j,t_{j+1}) = \rho_{M\to u}^{(k)}(t_j,t_{j+1}) \times (t_{j+1}-t_j)$$

$$A_u^{(k)}(t_j,t_{j+1}) = \rho_u^{(k)}(t_j,t_{j+1}) \times (t_{j+1}-t_j)$$

► All the constraints are once again linear © ▶ details

- lacktriangle Consider a stretch-interval between two critical values $[S_a; S_b]$
- ▶ Deadlines have a linear evolution
- Everything is linear !? Not really: when computing what receives a buffer during a time-interval:

$$\rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (T_{\mathsf{end}} - T_{\mathsf{start}})$$

 $T_{\rm end}, T_{\rm start}$: linear function in $S \sim$ quadratic constrains \odot

▶ Switch from *throughput* to *amount* variables:

$$A_{M\to u}^{(k)}(t_j,t_{j+1}) = \rho_{M\to u}^{(k)}(t_j,t_{j+1}) \times (t_{j+1}-t_j)$$

$$A_u^{(k)}(t_j,t_{j+1}) = \rho_u^{(k)}(t_j,t_{j+1}) \times (t_{j+1}-t_j)$$

► All the constraints are once again linear © ▶ details

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

- ► Which communication/computation model have we been using from the beginning ?
- ► My favorite over-classical one-port model ?

 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- ▶ No! no schedule reconstructed from the linear programs ☺
- ▶ Solution of a linear program : fluid throughput $\rho_u^{(k)}$, assumes
 - ▶ time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- ▶ Nice model for scheduling, but far from reality:
 - ▶ no data dependency (!)
 - ▶ Concurrent applications
 - ▶ Perfect time-sharing for computation and communication (!)
- ▶ We have to come back to the "reality"

- ► Which communication/computation model have we been using from the beginning ?
- ► My favorite over-classical one-port model ?

 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- ▶ No! no schedule reconstructed from the linear programs ☺
- ▶ Solution of a linear program : fluid throughput $\rho_u^{(k)}$, assumes
 - ▶ time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- ▶ Nice model for scheduling, but far from reality:
 - no data dependency (!)
 - ► Concurrent applications
 - ▶ Perfect time-sharing for computation and communication (!)
- ▶ We have to come back to the "reality"

- ► Which communication/computation model have we been using from the beginning ?
- ► My favorite over-classical one-port model ?

 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- ▶ No! no schedule reconstructed from the linear programs ②
- ▶ Solution of a linear program : fluid throughput $\rho_u^{(k)}$, assumes
 - time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- ▶ Nice model for scheduling, but far from reality:
 - ▶ no data dependency (!)
 - ► Concurrent applications
 - ▶ Perfect time-sharing for computation and communication (!)
- ▶ We have to come back to the "reality"

- ► Which communication/computation model have we been using from the beginning ?
- ► My favorite over-classical one-port model ?

 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- ▶ No! no schedule reconstructed from the linear programs ②
- ▶ Solution of a linear program : fluid throughput $\rho_u^{(k)}$, assumes
 - time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- ▶ Nice model for scheduling, but far from reality:
 - ▶ no data dependency (!)
 - ► Concurrent applications
 - ▶ Perfect time-sharing for computation and communication (!)
- ▶ We have to come back to the "reality"

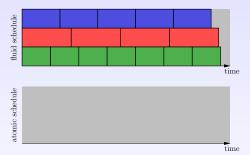
- ► Which communication/computation model have we been using from the beginning ?
- ► My favorite over-classical one-port model ?

 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- ▶ No! no schedule reconstructed from the linear programs ②
- ▶ Solution of a linear program : fluid throughput $\rho_u^{(k)}$, assumes
 - time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality:
 - ▶ no data dependency (!)
 - Concurrent applications
 - ▶ Perfect time-sharing for computation and communication (!)
- ▶ We have to come back to the "reality"

- ► Which communication/computation model have we been using from the beginning ?
- ► My favorite over-classical one-port model ?

 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- ▶ No! no schedule reconstructed from the linear programs ②
- ▶ Solution of a linear program : fluid throughput $\rho_u^{(k)}$, assumes
 - time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality:
 - no data dependency (!)
 - Concurrent applications
 - ▶ Perfect time-sharing for computation and communication (!)
- ▶ We have to come back to the "reality"

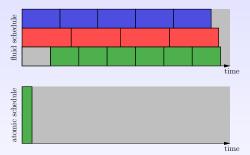
- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed



At each step, choose application which minimize

$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

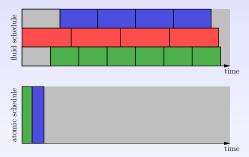
- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed



At each step, choose application which minimize

$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

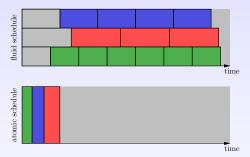
- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed



At each step, choose application which minimize

$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

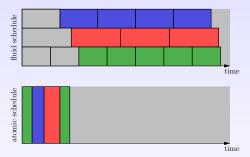
- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed



At each step, choose application which minimize

$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed



At each step, choose application which minimize

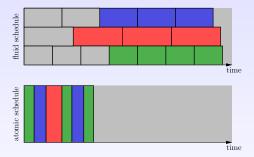
$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

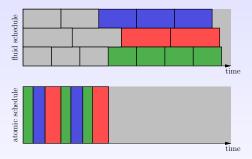
- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed



At each step, choose application which minimize

$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

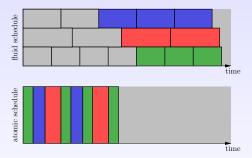
- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed



At each step, choose application which minimize

$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

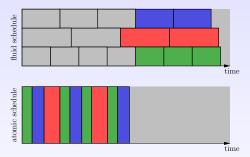
- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed



At each step, choose application which minimize

$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

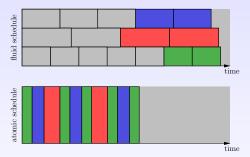
- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed



At each step, choose application which minimize

$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

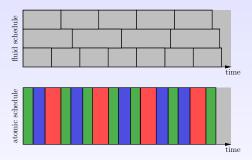
- ▶ General fluid schedule with rate α_k for application k
- ▶ task of application k takes time t_k at full speed



At each step, choose application which minimize

$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

- ▶ General fluid schedule with rate α_k for application k
- \blacktriangleright task of application k takes time t_k at full speed



At each step, choose application which minimize

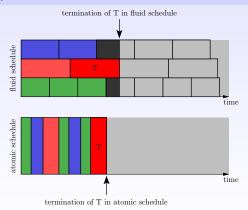
$$(n_k+1)\times \frac{t_k}{\alpha_k}$$

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the fluid schedule.

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the fluid schedule.



Lemma (1D).

In the 1D schedule, a task does not terminate later than in the fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (*M*: Makespan):

- 1. Reverse the time: $t \sim M t$
- 2. Apply 1D algorithm
- 3. Reverse the time one more time

Lemma (1D-inv)

In the 1D-inv schedule, a task does not start earlier than in the fluid schedule, and 1D-inv has a makespan $\leq M$.

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (M: Makespan):

- 1. Reverse the time: $t \sim M t$
- 2. Apply 1D algorithm
- 3. Reverse the time one more time

Lemma (1D-inv).

In the 1D-inv schedule, a task does not start earlier than in the fluid schedule, and 1D-inv has a makespan $\leq M$.

Back to the one-port model

From a fluid schedule (of communications and computations):

- 1. Round every quantities down to integer values
- 2. Shift all computations by one task (to cope with dependencies)
- 3. Apply 1D algorithm to communications
 - → communications finish in time
- 4. Apply 1D-inv algorithm to computations
 - \rightarrow computations do not start in advance

Results:

- We guarantee that data dependencies are satisfied
- Some tasks may be forgotten: at most a fixed number
- Take some time at the end of an application to process the missing tasks

Back to the one-port model

Asymptotic optimality: when the granularity of the application gets smaller (lots of small tasks), the one-port makespan gets closer to the fluid makespan.

- Construction of an atomic schedule for performance guarantee
- ▶ In practice:
 - ▶ 1D schedule for communications
 - Earliest Deadline First for computations

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Online multi-application – framework

- ▶ No available information about future submission
- ▶ Information for application k available at release date $r^{(k)}$

Adaptation:

- Consider only available information (already submitted applications)
- Restart offline algorithm at each release date (with updated information)
- online heuristic named CBS3M-online
- ▶ we also test the offline algorithm: CBS3M-offline

Online multi-application – framework

Classical heuristics to prioritize applications:

- ► First In First Out (FIFO)
- ► Shortest Processing Time (**SPT**)
- Shortest Remaining Processing Time (SRPT)
- ► Shortest Weighted Remaining Processing Time (**SWRPT**)

(+ heuristic to chose workers: **RR**, **MCT** or **DD**)

Previous heuristics do not mix applications,

 Master-Worker Multi-Application (MWMA) (previous work, designed for simultaneous submissions)

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Simulations and Experiments – settings

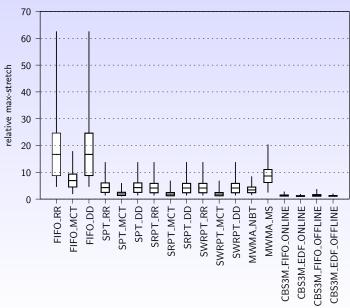
Experiments:

- ► GDSDMI cluster (8 workers)
- MPI communications
- Artificially slow-down communication and/or computations to emulate heterogeneity

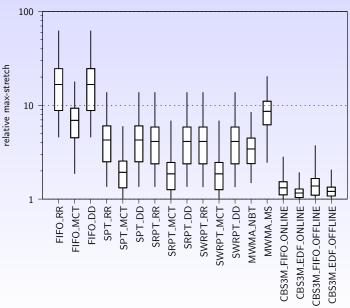
Simulation:

- SimGrid simulator
- Two scenarios:
 - 1. simulate MPI experiments
 - 2. extensive simulations with larger applications

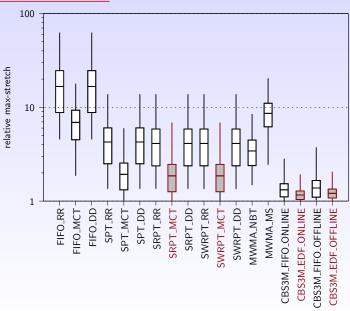
Simulations results



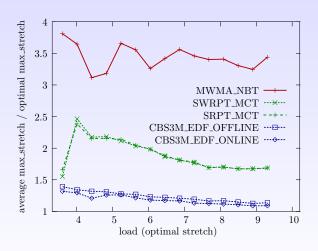
Simulations results



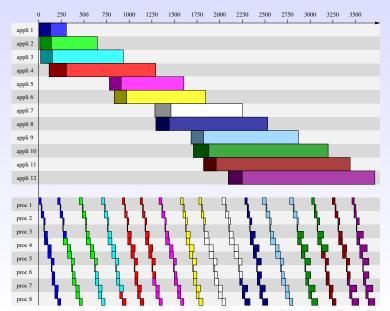
Simulations results



Simulations results - variation with load

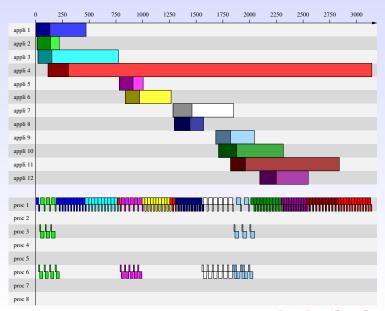


Gantt chart example: FIFO + RR

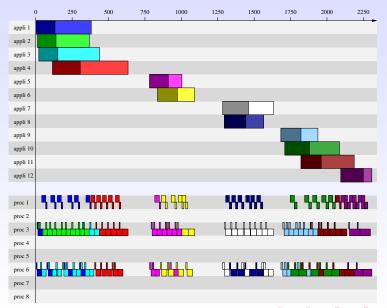


29/37

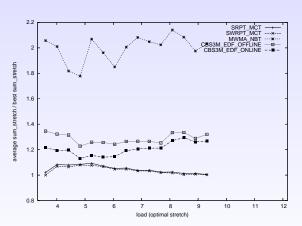
Gantt chart example: SRPT + MCT



Gantt chart example: CBS3M + EDF (online)

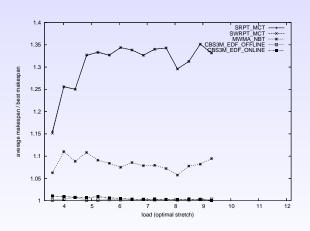


Sum-stretch



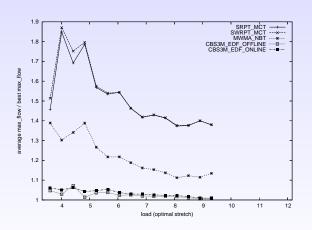
- best strategy: SWRPT (known to be optimal)
- ► CBSSM within 30-40%

Makespan

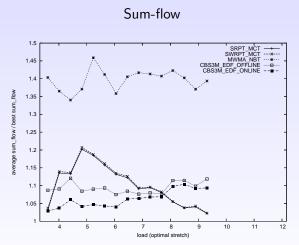


▶ best strategy: CBS3M

Max-flow

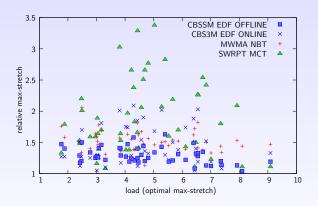


▶ best strategy: CBS3M



▶ best strategy: CBS3M/ SWRPT

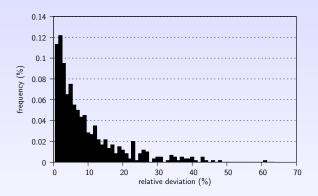
MPI experiments results



MPI experiments results

Algorithm	minimum	average	(± stddev)	maximum	(fraction of best result)
CBS3M_EDF_OFFLINE	1.04	1.30	(± 0.13)	1.63	(the best in 38.0%)
CBS3M_EDF_ONLINE	1.02	1.41	$(\pm \ 0.30)$	2.09	(the best in 30.0%)
CBS3M_FIFO_OFFLINE	1.04	1.38	(± 0.28)	2.97	(the best in 12.0%)
CBS3M_FIFO_ONLINE	1.02	1.46	(± 0.26)	1.96	(the best in 6.0%)
FIFO_MCT	1.10	1.81	(± 0.60)	4.15	(the best in 4.0%)
FIFO_RR	1.35	4.99	(± 3.46)	19.50	(the best in 0.0%)
MWMA_MS	1.22	2.29	(± 0.56)	4.05	(the best in 0.0%)
MWMA_NBT	1.13	1.50	(± 0.17)	2.06	(the best in 4.0%)
SPT_DD	1.33	4.87	(± 3.10)	18.75	(the best in 0.0%)
SPT_MCT	1.08	1.84	(± 0.61)	3.43	(the best in 4.0%)
SRPT_MCT	1.09	1.87	(± 0.59)	3.38	(the best in 0.0%)
SWRPT_MCT	1.08	1.88	(± 0.59)	3.38	(the best in 2.0%)

MPI experiments vs simulations



Relative deviation: $\frac{|S_{exp} - S_{simu}|}{S_{evg}}$

▶ average difference: 8.9%

▶ standard deviation: 9.5%

▶ median value: 5.5%

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Conclusion

- ► Key points:
 - Realistic platform model
 - Optimal offline algorithm
 - Efficient online algorithm based on offline study
- Extensions:
 - Extend the simulation to larger platform
 - ▶ Bi-criteria
 - Robustness

Positive values

► Non-negative throughputs.

$$\forall 1 \le u \le p, \forall 1 \le k \le n, \forall 1 \le j \le 2n - 1,$$

$$\rho_{M \to u}^{(k)}(t_j, t_{j+1}) \ge 0 \text{ and } \rho_u^{(k)}(t_j, t_{j+1}) \ge 0.$$
 (1)

► Non-negative buffers.

$$\forall 1 \leq k \leq n, \forall 1 \leq u \leq p, \forall 1 \leq j \leq 2n,$$

$$B_u^{(k)}(t_j) \geq 0. \quad (2)$$

Physical constraints

Bounded link capacity.

$$\forall 1 \leq j \leq 2n-1, \forall 1 \leq u \leq p,$$

$$\sum_{k=1}^{n} \rho_{M \to u}^{(k)}(t_{j}, t_{j+1}) \frac{\delta^{(k)}}{b_{u}} \leq 1. \quad (3)$$

Limited sending capacity of master.

$$\forall 1 \leq j \leq 2n-1,$$

$$\sum_{u=1}^{p} \sum_{k=1}^{n} \rho_{M \to u}^{(k)}(t_{j}, t_{j+1}) \frac{\delta^{(k)}}{\mathcal{B}} \leq 1. \quad (4)$$

Bounded computing capacity.

$$\forall 1 \leq j \leq 2n-1, \forall 1 \leq u \leq p,$$

$$\sum_{k=1}^{n} \rho_{u}^{(k)}(t_{j}, t_{j+1}) \frac{w^{(k)}}{s_{u}^{(k)}} \leq 1. \quad (5)$$

Buffer constraints

▶ Buffer initialization.

$$\forall \ 1 \leq k \leq n, \forall 1 \leq u \leq p,$$

$$B_u^{(k)}(r^{(k)}) = 0.$$
 (6)

Emptying Buffer.

$$\forall \ 1 \leq k \leq \textit{n}, \forall 1 \leq \textit{u} \leq \textit{p},$$

$$B_u^{(k)}(d^{(k)}) = 0.$$
 (7)

▶ Bounded size

$$\forall 1 \leq u \leq p, \forall 1 \leq j \leq 2n,$$

$$\sum_{k=1}^{n} B_{u}^{(k)}(t_{j}) \delta^{(k)} \leq M_{u}. \quad (8)$$

Tasks constraints

► Task conservation.

$$\forall 1 \leq k \leq n, \forall 1 \leq j \leq 2n-1, \forall 1 \leq u \leq p, B_{u}^{(k)}(t_{j+1}) = B_{u}^{(k)}(t_{j}) + \left(\rho_{M \to u}^{(k)}(t_{j}, t_{j+1}) - \rho_{u}^{(k)}(t_{j}, t_{j+1})\right) \times (t_{j+1} - t_{j}).$$
(9)

► Total number of tasks.

$$\forall \ 1 \leq k \leq n,$$

$$\sum_{\substack{1 \leq j \leq 2n-1 \\ t_j \geq r^{(k)} \\ t_{i+1} < d^{(k)}}} \sum_{u=1}^{p} \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) = \Pi^{(k)}. \quad (10)$$

Polyhedron

$$\begin{cases} \text{find } \rho_{M \to u}^{(k)}(t_j, t_{j+1}), \rho_u^{(k)}(t_j, t_{j+1}), \\ \forall k, u, j \text{ such that } 1 \leq k \leq n, 1 \leq u \leq p, 1 \leq j \leq 2n-1 \\ \text{under the constraints } (1), (2), (3), (4), (5), (6), (7), (8), (9) \text{ and } (10) \\ (K) \end{cases}$$

A given max-stretch $\mathcal{S}^{'}$ is achievable if and only if the Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function. • Back

Bounded link capacity.

$$\forall 1 \leq j \leq 2n-1, \forall 1 \leq u \leq p,$$

$$\sum_{k=1}^{n} A_{M \to u}^{(k)}(t_j, t_{j+1}) \frac{\delta^{(k)}}{b_u} \leq (\alpha_{j+1} - \alpha_j) \mathcal{S} + (\beta_{j+1} - \beta_j)$$

- Bounded link capacity.
- ► Limited sending capacity of master.

$$\forall 1 \leq j \leq 2n-1,$$

$$\sum_{u=1}^{p} \sum_{k=1}^{n} A_{M \to u}^{(k)}(t_j, t_{j+1}) \delta^{(k)} \leq \mathcal{B} \times ((\alpha_{j+1} - \alpha_j) \mathcal{S} + (\beta_{j+1} - \beta_j))$$

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.

$$\forall 1 \leq j \leq 2n - 1, \forall 1 \leq u \leq p,$$

$$\sum_{k=1}^{n} A_{u}^{(k)}(t_{j}, t_{j+1}) \frac{w^{(k)}}{s_{u}^{(k)}} \leq (\alpha_{j+1} - \alpha_{j}) \mathcal{S} + (\beta_{j+1} - \beta_{j})$$

- Bounded link capacity.
- ► Limited sending capacity of master.
- Bounded computing capacity.
- ► Total number of tasks.

$$\forall 1 \leq k \leq n$$
,

$$\sum_{\substack{1 \leq j \leq 2n-1 \\ t_j \geq r^{(k)} \\ t_{j+1} \leq d^{(k)}}} \sum_{u=1}^p A_{M \to u}^{(k)}(t_j, t_{j+1}) = \Pi^{(k)}$$

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- Task conservation.

$$\forall 1 \leq k \leq n, \forall 1 \leq j \leq 2n - 1, \forall 1 \leq u \leq p,$$

$$B_u^{(k)}(t_{j+1}) = B_u^{(k)}(t_j) + A_{M \to u}^{(k)}(t_j, t_{j+1}) - A_u^{(k)}(t_j, t_{j+1})$$

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- ► Total number of tasks.
- ► Task conservation.
- ► Non-negative buffer.
- Buffer initialization.
- ► Emptying Buffer.

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- ► Task conservation.
- ► Non-negative buffer.
- Buffer initialization.
- Emptying Buffer.
- Bounded stretch

$$S_a \le S \le S_b \tag{11}$$

