Offline and online master-worker scheduling of concurrent bags-of-tasks on heterogeneous platforms

Loris MARCHAL,

joint work with Anne BENOIT, Jean-François PINEAU, Yves ROBERT and Frédéric VIVIEN

Laboratoire de I'Informatique du Parallélisme
École Normale Supérieure de Lyon, France
graal working group, 28/02/2008

Object of the Study

- Bags-of-tasks application
- independent tasks
- large number of similar tasks
- models embarrassingly parallel applications
- argues for the use of wide distributed platforms
- Online scheduling
- applications arrive at different time (release dates)
- no knowledge on the future
- no global makespan, try to lower the suffering of each user

Object of the Study

- Bags-of-tasks application
- independent tasks
- large number of similar tasks
- models embarrassingly parallel applications
- argues for the use of wide distributed platforms
- Online scheduling
- applications arrive at different time (release dates)
- no knowledge on the future
- no global makespan, try to lower the suffering of each user

Building on our previous results

- Large number of tasks \Rightarrow steady-state scheduling
- designed for large applications
- suited for heterogeneous platforms, multiple applications
(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS'06)
- optimal platform utilization: throughput maximization
- neglect transient phases (initialization/clean-up)
- Online scheduling \Rightarrow maximum stretch minimization
- other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)
- stretch is a kind of price for sharing resources
- minimize the maximum stretch among applications: give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

Building on our previous results

- Large number of tasks \Rightarrow steady-state scheduling
- designed for large applications
- suited for heterogeneous platforms, multiple applications
(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS'06)
- optimal platform utilization: throughput maximization
- neglect transient phases (initialization/clean-up)
- Online scheduling \Rightarrow maximum stretch minimization
- other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)
- stretch is a kind of price for sharing resources
- minimize the maximum stretch among applications: give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

Building on our previous results

- Large number of tasks \Rightarrow steady-state scheduling
- designed for large applications
- suited for heterogeneous platforms, multiple applications
(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS'06)
- optimal platform utilization: throughput maximization
- neglect transient phases (initialization/clean-up)
- Online scheduling \Rightarrow maximum stretch minimization
- other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)
- stretch is a kind of price for sharing resources
- minimize the maximum stretch among applications: give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

Simple idea to bring things together

- Suppose we want to reach the maximum stretch \mathcal{S}
- For a given application, we can compute its makespan "if it was alone": MS
deadline $=$ release date $+\mathcal{S} \times M S$

Simple idea to bring things together

- Suppose we want to reach the maximum stretch \mathcal{S}
- For a given application, we can compute its makespan "if it was alone": MS
- This gives a deadline:

$$
\text { deadline }=\text { release date }+\mathcal{S} \times M S
$$

- Each application has now a release date and a deadline.

Simple idea to bring things together

－Suppose we want to reach the maximum stretch \mathcal{S}
－For a given application，we can compute its makespan＂if it was alone＂：MS
－This gives a deadline：

$$
\text { deadline }=\text { release date }+\mathcal{S} \times M S
$$

－Each application has now a release date and a deadline．
－Dates define intervals．
where we can apply steady－state relaxation！

Simple idea to bring things together

- Suppose we want to reach the maximum stretch \mathcal{S}
- For a given application, we can compute its makespan "if it was alone": MS
- This gives a deadline:

$$
\text { deadline }=\text { release date }+\mathcal{S} \times M S
$$

- Each application has now a release date and a deadline.
- Dates define intervals.
where we can apply steady-state relaxation!

Simple idea to bring things together

- Suppose we want to reach the maximum stretch \mathcal{S}
- For a given application, we can compute its makespan "if it was alone": MS
- This gives a deadline:

$$
\text { deadline }=\text { release date }+\mathcal{S} \times M S
$$

- Each application has now a release date and a deadline.
- Dates define intervals...
where we can apply steady-state relaxation!

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Single bag-of-task application - context

- Master-Slave platform (heterogeneous):

Tasks

- Bunch of identical tasks
- Computing optima' ma'kespan: already difficult problem

Single bag-of-task application - context

- Master-Slave platform (heterogeneous):

Tasks computation size: w (MFlop)

- Bunch of identical tasks
- Computing optimal makespan: already difficult problem
- Steady-state relaxation to get a lower bound

Single bag-of-task application - context

- Master-Slave platform (heterogeneous):

- Bunch of identical tasks
- Computing optimal makespan: already difficult problem
- Steady-state relaxation to get a lower bound

Single bag-of-task application - context

- Master-Slave platform (heterogeneous):

- Bunch of identical tasks
- Computing optimal makespan: already difficult problem
- Steady-state relaxation to get a lower bound

Single bag-of-task application - context

- Master-Slave platform (heterogeneous):

- Bunch of identical tasks
- Computing optimal makespan: already difficult problem
- Steady-state relaxation to get a lower bound

Single bag-of-task application - steady-state

Motivations:

- Assume the number of tasks is huge
- Forget about makespan (meaningless)
- Concentrate on throughput (fluid framework)

How it works:

- Consider average values:
"master sends 5.3 tasks per second to worker 3"
- Write constraints on these variables
- Optimize total throughput under these constraints (with the help of linear programming)
- Reconstruct near-optimal schedule from average values

Single bag-of-task application - steady-state

Motivations:

- Assume the number of tasks is huge
- Forget about makespan (meaningless)
- Concentrate on throughput (fluid framework)

How it works:

- Consider average values: "master sends 5.3 tasks per second to worker 3"
- Write constraints on these variables
- Optimize total throughput under these constraints (with the help of linear programming)
- Reconstruct near-optimal schedule from average values (we skip this step for now)

Single bag-of-task application - steady-state

Motivations:

- Assume the number of tasks is huge
- Forget about makespan (meaningless)
- Concentrate on throughput (fluid framework)

How it works:

- Consider average values: "master sends 5.3 tasks per second to worker 3"
- Write constraints on these variables
- Optimize total throughput under these constraints (with the help of linear programming)
- Reconstruct near-optimal schedule from average values (we skip this step for now)

Single bag-of-task application - linear program

$$
\left(\text { MAXIMIZE } \rho=\sum_{u=1}^{p} \rho_{u}\right.
$$

SUBJECT TO

$$
\begin{aligned}
& \rho_{u} \frac{w}{s_{u}} \leq 1 \\
& \rho_{u} \frac{\delta}{b_{u}} \leq 1
\end{aligned}
$$

ρ_{u} : throughput of worker P_{u}
ρ : Total throughput

Analytical solution

Single bag-of-task application - linear program

$$
\left(\text { MAXIMIZE } \rho=\sum_{u=1}^{p} \rho_{u}\right.
$$

SUBJECT TO

$$
\left\{\begin{array}{l}
\rho_{u} \frac{w}{s_{u}} \leq 1 \\
\rho_{u} \frac{\delta}{b_{u}} \leq 1 \\
\sum_{u=1}^{p} \rho_{u} \frac{\delta}{\mathcal{B}} \leq 1
\end{array}\right.
$$

ρ_{u} : throughput of worker P_{u}
ρ : Total throughput

Analytical solution

$$
\rho=\min \left\{\frac{\mathcal{B}}{\delta}, \sum_{u=1}^{p} \min \left\{\frac{s_{u}}{w}, \frac{b_{u}}{w}\right\}\right\} .
$$

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Offline multi-application - framework

For each application k (task of sizes $w^{(k)}, \delta^{(k)}$), we have:

- a release date
- the optimal throughput (alone): $\rho^{*(k)}$
\sim a bound on the makespan alone:

$$
M S^{(k)} \geq \frac{\text { number of tasks }}{\text { optimal throughput }}=\frac{\Pi^{(k)}}{\rho^{*(k)}}
$$

- not only a lower bound, rather an approximation...

We try to reach stretch \mathcal{S} :

- deadline:

$$
\text { deadline }{ }^{(k)}=\text { release date }^{(k)}+\mathcal{S} \times \frac{\Pi^{(k)}}{\rho^{*(k)}}
$$

Time-intervals for target stretch

If we try to reach stretch $\mathcal{S}=2$:

Time-intervals for target stretch

If we try to reach stretch $\mathcal{S}=2$:

Time-intervals for target stretch

If we try to reach stretch $\mathcal{S}=2$:

Time-intervals for target stretch

If we try to reach stretch $\mathcal{S}=2$:

Time-intervals for target stretch

If we try to reach stretch $\mathcal{S}=2$:

Time-intervals for target stretch

If we try to reach stretch $\mathcal{S}=2$:

Resolution for a target stretch \mathcal{S}

New variables:

- communication throughput $\rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right)$
- computation throughput $\rho_{u}^{(k)}\left(t_{j}, t_{j+1}\right)$
- state of buffers: $B_{u}^{(k)}\left(t_{j}\right)$ (number of non-executed tasks at time t_{j})
New constraints:
- Complex (but straightforward) conservation laws between throughputs and buffer state details
- Assert that all tasks of an application are treated.
- Resource limitations

Set of linear constraints, defining a convex $K(\mathcal{S})$.

$$
K(\mathcal{S}) \text { non-empty } \Leftrightarrow \mathcal{S} \text { feasible }
$$

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$
d^{(k)}(\mathcal{S})=r^{(k)}+\mathcal{S} \times M S^{*(k)}
$$

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$
d^{(k)}(\mathcal{S})=r^{(k)}+\mathcal{S} \times M S^{*(k)}
$$

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$
d^{(k)}(\mathcal{S})=r^{(k)}+\mathcal{S} \times M S^{*(k)}
$$

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$
d^{(k)}(\mathcal{S})=r^{(k)}+\mathcal{S} \times M S^{*(k)}
$$

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$
d^{(k)}(\mathcal{S})=r^{(k)}+\mathcal{S} \times M S^{*(k)}
$$

Binary search between stretch-interval

- Consider a stretch-interval between two critical values $\left[\mathcal{S}_{a} ; \mathcal{S}_{b}\right]$
- Deadlines have a linear evolution

Binary search between stretch-interval

- Consider a stretch-interval between two critical values $\left[\mathcal{S}_{a} ; \mathcal{S}_{b}\right]$
- Deadlines have a linear evolution
- Everything is linear !?

Binary search between stretch-interval

- Consider a stretch-interval between two critical values $\left[\mathcal{S}_{a} ; \mathcal{S}_{b}\right]$
- Deadlines have a linear evolution
- Everything is linear !?
when computing what receives a buffer during a time-interval:

$$
\rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \times\left(T_{\text {end }}-T_{\text {start }}\right)
$$

$T_{\text {end }}, T_{\text {start }}$: linear function in \mathcal{S} \sim quadratic constrains ©

- Switch from throughput to amount variables:

Binary search between stretch-interval

- Consider a stretch-interval between two critical values $\left[\mathcal{S}_{a} ; \mathcal{S}_{b}\right]$
- Deadlines have a linear evolution
- Everything is linear !? Not really: when computing what receives a buffer during a time-interval:

$$
\rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \times\left(T_{\text {end }}-T_{\text {start }}\right)
$$

$T_{\text {end }}, T_{\text {start }}$: linear function in \mathcal{S}
\sim quadratic constrains $)$

- Switch from throughput to amount variables:

- All the constraints are once again linear

Binary search between stretch-interval

- Consider a stretch-interval between two critical values $\left[\mathcal{S}_{a} ; \mathcal{S}_{b}\right]$
- Deadlines have a linear evolution
- Everything is linear !? Not really: when computing what receives a buffer during a time-interval:

$$
\rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \times\left(T_{\text {end }}-T_{\text {start }}\right)
$$

$T_{\text {end }}, T_{\text {start }}$: linear function in \mathcal{S}
\sim quadratic constrains $)$

- Switch from throughput to amount variables:

$$
\begin{aligned}
A_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) & =\rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \times\left(t_{j+1}-t_{j}\right) \\
A_{u}^{(k)}\left(t_{j}, t_{j+1}\right) & =\rho_{u}^{(k)}\left(t_{j}, t_{j+1}\right) \times\left(t_{j+1}-t_{j}\right)
\end{aligned}
$$

- All the constraints are once again linear $(-)+$ detais

Binary search between stretch-interval

- Consider a stretch-interval between two critical values $\left[\mathcal{S}_{a} ; \mathcal{S}_{b}\right]$
- Deadlines have a linear evolution
- Everything is linear !? Not really: when computing what receives a buffer during a time-interval:

$$
\rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \times\left(T_{\text {end }}-T_{\text {start }}\right)
$$

$T_{\text {end }}, T_{\text {start }}$: linear function in \mathcal{S}
\sim quadratic constrains $):$

- Switch from throughput to amount variables:

$$
\begin{aligned}
A_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) & =\rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \times\left(t_{j+1}-t_{j}\right) \\
A_{u}^{(k)}\left(t_{j}, t_{j+1}\right) & =\rho_{u}^{(k)}\left(t_{j}, t_{j+1}\right) \times\left(t_{j+1}-t_{j}\right)
\end{aligned}
$$

- All the constraints are once again linear () details

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Discussion on models

- Which communication/computation model have we been using from the beginning ?
My favorite over-classical one-port model ? (a processor sends/receives one message at a time, and can overlap the communications by computations)

Discussion on models

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the communications by computations)
- No! no schedule reconstructed from the linear programs $\mathcal{)}$ assumes > time-sharing for communication and computation - "Synchronous Start" for communication and computation

Discussion on models

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the communications by computations)
- No! no schedule reconstructed from the linear programs $)^{-}$
\square
- Solution of a linear program fluid throughput $\rho_{u}^{(k)}$ assumes
- time-sharing for communication and computation
- "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality
- no data dependency (!)
- Concurrent applications
- Perfect time-sharing for computation and communication (!)

Discussion on models

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the communications by computations)
- No! no schedule reconstructed from the linear programs $)^{-}$
- Solution of a linear program : fluid throughput $\rho_{u}^{(k)}$, assumes
- time-sharing for communication and computation
- "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality:
- no data dependency (!)
- Concurrent applications
- Perfect time-sharing for computation and communication (!)
- We have to come back to the "reality'

Discussion on models

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the communications by computations)
- No! no schedule reconstructed from the linear programs $)^{-}$
- Solution of a linear program : fluid throughput $\rho_{u}^{(k)}$, assumes
- time-sharing for communication and computation
- "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality:
- no data dependency (!)
- Concurrent applications
- Perfect time-sharing for computation and communication (!)
- We have to come back to the "reality"

Discussion on models

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the communications by computations)
- No! no schedule reconstructed from the linear programs $)^{-}$
- Solution of a linear program : fluid throughput $\rho_{u}^{(k)}$, assumes
- time-sharing for communication and computation
- "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality:
- no data dependency (!)
- Concurrent applications
- Perfect time-sharing for computation and communication (!)
- We have to come back to the "reality"

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

One-dimensional load-balancing

- General fluid schedule with rate α_{k} for application k
- task of application k takes time t_{k} at full speed

At each step, choose application which minimize

$$
\left(n_{k}+1\right) \times \frac{t_{k}}{\alpha_{k}}
$$

n_{k} : number of task from application k already scheduled

Properties of 1D schedules

Lemma (1D).
In the 1D schedule, a task does not terminate later than in the fluid schedule.

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the fluid schedule.

termination of T in atomic schedule

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the fluid schedule.
Construction of 1D-inv schedule from a fluid schedule (M : Makespan):

1. Reverse the time: $t \sim M-t$
2. Apply 1 D algorithm
3. Reverse the time one more time

Lemma (1D-inv).
In the 1D-inv schedule, a task does not start earlier than in the
fluid schedule, and 1D-inv has a makespan $\leq M$.

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the fluid schedule.
Construction of 1D-inv schedule from a fluid schedule (M : Makespan):

1. Reverse the time: $t \sim M-t$
2. Apply 1 D algorithm
3. Reverse the time one more time

Lemma (1D-inv).
In the 1D-inv schedule, a task does not start earlier than in the fluid schedule, and 1D-inv has a makespan $\leq M$.

Back to the one-port model

From a fluid schedule (of communications and computations):

1. Round every quantities down to integer values
2. Shift all computations by one task (to cope with dependencies)
3. Apply 1D algorithm to communications
\rightarrow communications finish in time
4. Apply 1D-inv algorithm to computations \rightarrow computations do not start in advance

Results:

- We guarantee that data dependencies are satisfied
- Some tasks may be forgotten: at most a fixed number
- Take some time at the end of an application to process the missing tasks

Back to the one-port model

Asymptotic optimality: when the granularity of the application gets smaller (lots of small tasks), the one-port makespan gets closer to the fluid makespan.

- Construction of an atomic schedule for performance guarantee
- In practice:
- 1D schedule for communications
- Earliest Deadline First for computations

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Online multi－application－framework

－No available information about future submission
－Information for application k available at release date $r^{(k)}$

Adaptation：
－Consider only available information（already submitted applications）
－Restart offline algorithm at each release date（with updated information）
－online heuristic named CBS3M－online
－we also test the offline algorithm：CBS3M－offline

Online multi-application - framework

Classical heuristics to prioritize applications:

- First In First Out (FIFO)
- Shortest Processing Time (SPT)
- Shortest Remaining Processing Time (SRPT)
- Shortest Weighted Remaining Processing Time (SWRPT)
(+ heuristic to chose workers: RR, MCT or DD)

Previous heuristics do not mix applications,

- Master-Worker Multi-Application (MWMA) (previous work, designed for simultaneous submissions)

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case
Simulations and Experiments

Conclusion

Simulations and Experiments - settings

Experiments:

- GDSDMI cluster (8 workers)
- MPI communications
- Artificially slow-down communication and/or computations to emulate heterogeneity

Simulation:

- SimGrid simulator
- Two scenarios:

1. simulate MPI experiments
2. extensive simulations with larger applications

Simulations results

Simulations results

Simulations results

Simulations results - variation with load

Gantt chart example：FIFO＋RR

Gantt chart example: SRPT + MCT

Gantt chart example: CBS3M + EDF (online)

Simulations results - other metrics

Sum-stretch

- best strategy: SWRPT (known to be optimal)
- CBSSM within 30-40\%

Simulations results - other metrics

Makespan

- best strategy: CBS3M

Simulations results - other metrics

Max-flow

- best strategy: CBS3M

Simulations results - other metrics

Sum-flow

- best strategy: CBS3M/ SWRPT

MPI experiments results

MPI experiments results

Algorithm	minimum	average	(\pm stddev)	maximum	(fraction of best result)
CBS3M_EDF_OFFLINE	1.04	1.30	(± 0.13)	1.63	(the best in 38.0\%)
CBS3M_EDF_ONLINE	1.02	1.41	($\pm 0.30)$	2.09	(the best in 30.0\%)
CBS3M_FIFO_OFFLINE	1.04	1.38	($\pm 0.28)$	2.97	(the best in 12.0\%)
CBS3M_FIFO_ONLINE	1.02	1.46	($\pm 0.26)$	1.96	(the best in 6.0\%)
FIFO_MCT	1.10	1.81	($\pm 0.60)$	4.15	(the best in 4.0\%)
FIFO_RR	1.35	4.99	($\pm 3.46)$	19.50	(the best in 0.0\%)
MWMA_MS	1.22	2.29	($\pm 0.56)$	4.05	(the best in 0.0\%)
MWMA_NBT	1.13	1.50	($\pm 0.17)$	2.06	(the best in 4.0\%)
SPT_DD	1.33	4.87	($\pm 3.10)$	18.75	(the best in 0.0\%)
SPT_MCT	1.08	1.84	($\pm 0.61)$	3.43	(the best in 4.0\%)
SRPT_MCT	1.09	1.87	($\pm 0.59)$	3.38	(the best in 0.0\%)
SWRPT_MCT	1.08	1.88	($\pm 0.59)$	3.38	(the best in 2.0\%)

MPI experiments vs simulations

Relative deviation: $\frac{\left|\mathcal{S}_{\exp }-\mathcal{S}_{\text {simu }}\right|}{\mathcal{S}_{\exp }}$

- average difference: 8.9\%
- standard deviation: 9.5\%
- median value: 5.5\%

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

Conclusion

- Key points:
- Realistic platform model
- Optimal offline algorithm
- Efficient online algorithm based on offline study
- Extensions:
- Extend the simulation to larger platform
- Bi-criteria
- Robustness

Positive values

- Non-negative throughputs.

$$
\begin{align*}
\forall 1 \leq u \leq p, \forall 1 \leq & k \leq n, \forall 1 \leq j \leq 2 n-1 \\
& \rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \geq 0 \text { and } \rho_{u}^{(k)}\left(t_{j}, t_{j+1}\right) \geq 0 . \tag{1}
\end{align*}
$$

- Non-negative buffers.

$$
\forall 1 \leq k \leq n, \forall 1 \leq u \leq p, \forall 1 \leq j \leq 2 n, \quad \quad \quad B_{u}^{(k)}\left(t_{j}\right) \geq 0 .
$$

Physical constraints

- Bounded link capacity.

$$
\begin{align*}
& \forall 1 \leq j \leq 2 n-1, \forall 1 \leq u \leq p, \\
& \sum_{k=1}^{n} \rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \frac{\delta^{(k)}}{b_{u}} \leq 1 . \tag{3}
\end{align*}
$$

- Limited sending capacity of master.

$$
\begin{align*}
& \forall 1 \leq j \leq 2 n-1, \\
& \qquad \sum_{u=1}^{p} \sum_{k=1}^{n} \rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \frac{\delta^{(k)}}{\mathcal{B}} \leq 1 . \tag{4}
\end{align*}
$$

- Bounded computing capacity.

$$
\forall 1 \leq j \leq 2 n-1, \forall 1 \leq u \leq p, \quad \sum_{k=1}^{n} \rho_{u}^{(k)}\left(t_{j}, t_{j+1}\right) \frac{w^{(k)}}{s_{u}^{(k)}} \leq 1 .
$$

Buffer constraints

- Buffer initialization.

$$
\forall 1 \leq k \leq n, \forall 1 \leq u \leq p,
$$

$$
\begin{equation*}
B_{u}^{(k)}\left(r^{(k)}\right)=0 . \tag{6}
\end{equation*}
$$

- Emptying Buffer.

$$
\forall 1 \leq k \leq n, \forall 1 \leq u \leq p,
$$

$$
\begin{equation*}
B_{u}^{(k)}\left(d^{(k)}\right)=0 . \tag{7}
\end{equation*}
$$

- Bounded size

$$
\forall 1 \leq u \leq p, \forall 1 \leq j \leq 2 n, \quad \sum_{k=1}^{n} B_{u}^{(k)}\left(t_{j}\right) \delta^{(k)} \leq M_{u} .
$$

Tasks constraints

- Task conservation.

$$
\begin{align*}
& \forall 1 \leq k \leq n, \forall 1 \leq j \leq 2 n-1, \forall 1 \leq u \leq p, \\
& B_{u}^{(k)}\left(t_{j+1}\right)=B_{u}^{(k)}\left(t_{j}\right)+\left(\rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right)-\rho_{u}^{(k)}\left(t_{j}, t_{j+1}\right)\right) \times\left(t_{j+1}-t_{j}\right) . \tag{9}
\end{align*}
$$

- Total number of tasks.

$$
\begin{align*}
& \forall 1 \leq k \leq n \\
& \qquad \sum_{\substack{1 \leq j \leq 2 n-1 \\
t_{j} \geq r^{(k)} \\
t_{j+1} \leq d^{(k)}}} \sum_{u=1}^{p} \rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \times\left(t_{j+1}-t_{j}\right)=\Pi^{(k)} \tag{10}
\end{align*}
$$

Polyhedron

$$
\left\{\begin{array}{l}
\text { find } \rho_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right), \rho_{u}^{(k)}\left(t_{j}, t_{j+1}\right) \\
\forall k, u, j \text { such that } 1 \leq k \leq n, 1 \leq u \leq p, 1 \leq j \leq 2 n-1 \\
\text { under the constraints (1), (2), (3), (4), (5), (6), (7), (8), (9) and (10) }
\end{array}\right.
$$

A given max-stretch \mathcal{S}^{\prime} is achievable if and only if the Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function.

New constraints

- Bounded link capacity.

$$
\begin{aligned}
& \forall 1 \leq j \leq 2 n-1, \forall 1 \leq u \leq p, \\
& \qquad \sum_{k=1}^{n} A_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \frac{\delta^{(k)}}{b_{u}} \leq\left(\alpha_{j+1}-\alpha_{j}\right) \mathcal{S}+\left(\beta_{j+1}-\beta_{j}\right)
\end{aligned}
$$

New constraints

- Bounded link capacity.
- Limited sending capacity of master.

$$
\begin{aligned}
& \forall 1 \leq j \leq 2 n-1 \\
& \sum_{u=1}^{p} \sum_{k=1}^{n} A_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right) \delta^{(k)} \leq \mathcal{B} \times\left(\left(\alpha_{j+1}-\alpha_{j}\right) \mathcal{S}+\left(\beta_{j+1}-\beta_{j}\right)\right)
\end{aligned}
$$

New constraints

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.

$$
\begin{aligned}
\forall 1 \leq j \leq & 2 n-1, \forall 1 \leq u \leq p \\
& \sum_{k=1}^{n} A_{u}^{(k)}\left(t_{j}, t_{j+1}\right) \frac{w^{(k)}}{s_{u}^{(k)}} \leq\left(\alpha_{j+1}-\alpha_{j}\right) \mathcal{S}+\left(\beta_{j+1}-\beta_{j}\right)
\end{aligned}
$$

New constraints

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.

$$
\forall 1 \leq k \leq n
$$

$$
\sum_{\substack{1 \leq j \leq 2 n-1 \\ t_{j} \geq r^{(k)} \\ t_{j+1} \leq d^{(k)}}} \sum_{u=1}^{p} A_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right)=\Pi^{(k)}
$$

New constraints

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- Task conservation.

$$
\begin{aligned}
& \forall 1 \leq k \leq n, \forall 1 \leq j \leq 2 n-1, \forall 1 \leq u \leq p \\
& \qquad B_{u}^{(k)}\left(t_{j+1}\right)=B_{u}^{(k)}\left(t_{j}\right)+A_{M \rightarrow u}^{(k)}\left(t_{j}, t_{j+1}\right)-A_{u}^{(k)}\left(t_{j}, t_{j+1}\right)
\end{aligned}
$$

New constraints

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- Task conservation.
- Non-negative buffer.
- Buffer initialization.
- Emptying Buffer.

New constraints

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- Task conservation.
- Non-negative buffer.
- Buffer initialization.
- Emptying Buffer.
- Bounded stretch

$$
\begin{equation*}
\mathcal{S}_{a} \leq \mathcal{S} \leq \mathcal{S}_{b} \tag{11}
\end{equation*}
$$

