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» Online scheduling
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applications arrive at different time (release dates)
no knowledge on the future
no global makespan, try to lower the suffering of each user
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Building on our previous results

» Large number of tasks = steady-state scheduling

» designed for large applications

» suited for heterogeneous platforms, multiple applications
(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

» optimal platform utilization: throughput maximization

» neglect transient phases (initialization/clean-up)
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» neglect transient phases (initialization/clean-up)

» Online scheduling = maximum stretch minimization

> other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)
» stretch is a kind of price for sharing resources
> minimize the maximum stretch among applications:
give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory
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Simple idea to bring things together

v

Suppose we want to reach the maximum stretch S

v

For a given application, we can compute its makespan “if it
was alone”: MS

v

This gives a deadline:

deadline = release date + S x MS

v

Each application has now a release date and a deadline.

v

Dates define intervals. . .
where we can apply steady-state relaxation!
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Single bag-of-task application — context

» Master-Slave platform (heterogeneous):

Tasks Computation size: w (MFIo )
communication size: s SJ

Master

Network

Links bandwidth b, (MB/s)

Worker P,
speed s, (MFlop/s)

‘Workers

» Bunch of identical tasks
» Computing optimal makespan: already difficult problem

> Steady-state relaxation to get a lower bound

7/37
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Single bag-of-task application — steady-state

Motivations:
» Assume the number of tasks is huge
» Forget about makespan (meaningless)

» Concentrate on throughput (fluid framework)

How it works:

» Consider average values:
“master sends 5.3 tasks per second to worker 3"

» Write constraints on these variables

» Optimize total throughput under these constraints
(with the help of linear programming)

» Reconstruct near-optimal schedule from average values
(we skip this step for now)
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Single bag-of-task application — linear program

P
MAXIMIZE p = Z Pu

u=1
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pu— < 1 pu: throughput of worker P,
Sg p: Total throughput
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Single bag-of-task application — linear program

P
MAXIMIZE p = Z Pu

u=1
SUBJECT TO
puﬂ <1 pu: throughput of worker P,
Sg p: Total throughput
— <1
Pu by —

> it
Pu <1
u=1 B

Analytical solution

BE& . (su by
p—mln{57;m|n{w,w}}.
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Several bag-of-task applications: offline case
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Offline multi-application — framework

For each application k (task of sizes w(k), 5(")), we have:
» a release date
» the optimal throughput (alone): p*(k)

~> a bound on the makespan alone:

MSk) > number of tasks )
~ optimal throughput — p*(k)

» not only a lower bound, rather an approximation. ..
We try to reach stretch S:

» deadline:

" P k)
deadline(K) = release date(K) + S8 x —®
p*
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Time-intervals for target stretch

If we try to reach stretch S = 2:
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Time-intervals for target stretch

If we try to reach stretch S = 2:

time-interval

. without change_. ; . ¢
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Resolution for a target stretch S

New variables:
» communication throughput ps\l/(,)_)u(tj, tjit1)

» computation throughput ,of,k)(tj, tit1)
» state of buffers: BL(,k)(tJ-)
(number of non-executed tasks at time t;)

New constraints:

» Complex (but straightforward) conservation laws between
throughputs and buffer state

» Assert that all tasks of an application are treated.
» Resource limitations
Set of linear constraints, defining a convex K(S).

K(S) non-empty < S feasible
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Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

» Basic binary search (with precision €), or

» Involved search among stretch-intervals:

d(S) = ) 4 8 x Ms*(k).
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Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

» Basic binary search (with precision €), or

» Involved search among stretch-intervals:

r

dX(8) = r) + & x Ms*(K)
n

r3

- no dates crossing
- linear evolution
Ss
Ss
S3
S




Binary search between stretch-interval

» Consider a stretch-interval between two critical values [Sa; Sp]
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Binary search between stretch-interval

v

Consider a stretch-interval between two critical values [S,; Sp]

Deadlines have a linear evolution

v

v

Everything is linear |7 Not really:
when computing what receives a buffer during a time-interval:

P%Lu(tja tj—&-l) X (Tend - Tstart)

Tends Tstart: linear function in S
~» quadratic constrains ®

» Switch from throughput to amount variables:
k k
AL (5, ta1) = L (8 ) X (t1 — &)
k k
A t01) = p(E t41) X (41 — 1)

v

All the constraints are once again linear ©

15/37



QOutline

Discussion on models

16/37



Discussion on models

» Which communication/computation model have we been
using from the beginning ?

17/37



Discussion on models

» Which communication/computation model have we been
using from the beginning 7

» My favorite over-classical one-port model ?

(a processor sends/receives one message at a time, and can overlap the
communications by computations)

17/37



Discussion on models

» Which communication/computation model have we been
using from the beginning 7

» My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

» No! no schedule reconstructed from the linear programs @

17/37



Discussion on models

» Which communication/computation model have we been
using from the beginning 7

» My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the
communications by computations)

» No! no schedule reconstructed from the linear programs @

» Solution of a linear program : fluid throughput pf,k), assumes

> time-sharing for communication and computation
» “Synchronous Start” for communication and computation

17/37



Discussion on models

» Which communication/computation model have we been
using from the beginning 7
» My favorite over-classical one-port model ?

(a processor sends/receives one message at a time, and can overlap the

communications by computations)

» No! no schedule reconstructed from the linear programs @

» Solution of a linear program : fluid throughput pf,k), assumes

> time-sharing for communication and computation
» “Synchronous Start” for communication and computation

» Nice model for scheduling, but far from reality:

» no data dependency (!)
» Concurrent applications
» Perfect time-sharing for computation and communication (!)

17/37



Discussion on models

» Which communication/computation model have we been
using from the beginning 7

» My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

» No! no schedule reconstructed from the linear programs @

» Solution of a linear program : fluid throughput pf,k), assumes

> time-sharing for communication and computation
» “Synchronous Start” for communication and computation

» Nice model for scheduling, but far from reality:

» no data dependency (!)
» Concurrent applications
» Perfect time-sharing for computation and communication (!)

» We have to come back to the “reality”
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One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

ty
1) x —
(nk +1) o
nk: number of task from application k already scheduled
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Properties of 1D schedules

Lemma (1D).
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fluid schedule.

19/37



Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

termination of T in fluid schedule

fluid schedule

atomic schedule

T time

termination of T in atomic schedule

19/37



Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (M:
Makespan):

1. Reverse the time: t~ M — t
2. Apply 1D algorithm

3. Reverse the time one more time

19/37



Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (M:
Makespan):

1. Reverse the time: t~ M — t
2. Apply 1D algorithm

3. Reverse the time one more time

Lemma (1D-inv).
In the 1D-inv schedule, a task does not start earlier than in the
fluid schedule, and 1D-inv has a makespan < M.

19/37



Back to the one-port model

From a fluid schedule (of communications and computations):
1. Round every quantities down to integer values

2. Shift all computations by one task (to cope with
dependencies)

3. Apply 1D algorithm to communications
— communications finish in time

4. Apply 1D-inv algorithm to computations
— computations do not start in advance

Results:
» We guarantee that data dependencies are satisfied
» Some tasks may be forgotten: at most a fixed number
» Take some time at the end of an application to process the

missing tasks
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Back to the one-port model

Asymptotic optimality: when the granularity of the application gets
smaller (lots of small tasks), the one-port makespan gets closer to
the fluid makespan.

» Construction of an atomic schedule for performance guarantee
» In practice:

» 1D schedule for communications
» Earliest Deadline First for computations
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Several bag-of-task applications: online case
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Online multi-application — framework

» No available information about future submission

» Information for application k available at release date r(k)

Adaptation:

» Consider only available information (already submitted
applications)

» Restart offline algorithm at each release date (with updated
information)

» online heuristic named CBS3M-online

> we also test the offline algorithm: CBS3M-offline
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Online multi-application — framework

Classical heuristics to prioritize applications:

» First In First Out (FIFO)

» Shortest Processing Time (SPT)

» Shortest Remaining Processing Time (SRPT)

» Shortest Weighted Remaining Processing Time (SWRPT)
(4 heuristic to chose workers: RR, MCT or DD)

Previous heuristics do not mix applications,
» Master-Worker Multi-Application (MWMA)

(previous work, designed for simultaneous submissions)
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Simulations and Experiments
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Simulations and Experiments — settings

Experiments:
» GDSDMI cluster (8 workers)
» MPI communications

» Artificially slow-down communication and/or computations to
emulate heterogeneity

Simulation:

» SimGrid simulator
» Two scenarios:

1. simulate MPI experiments
2. extensive simulations with larger applications
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Simulations results
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Simulations results — variation with load
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Gantt chart example: FIFO + RR
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Gantt chart example: SRPT + MCT
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Gantt chart example: CBS3M + EDF (online)
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Simulations results — other metrics

Sum-stretch
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Simulations results — other metrics
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Simulations results — other metrics
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MPI experiments results
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MPI experiments results

Algorithm minimum average (&£ stddev) maximum (fraction of best result)
CBS3M_EDF_OFFLINE 1.04 1.30 (£ 0.13) 1.63 (the best in 38.0%)
CBS3M_EDF_ONLINE 1.02 1.41 (£ 0.30) 2.09 (the best in 30.0%)
CBS3M_FIFO_OFFLINE 1.04 1.38 (£ 0.28) 2.97 (the best in 12.0%)
CBS3M_FIFO_ONLINE 1.02 1.46 (£ 0.26) 1.96 (the best in 6.0%)

FIFO_MCT 1.10 1.81 (& 0.60) 415 (the best in 4.0%)

FIFO_RR 1.35 4.99 (& 3.46) 19.50 (the best in 0.0%)

MWMA_MS 1.22 2.29 (£ 0.56) 4.05 (the best in 0.0%)
MWMA_NBT 1.13 1.50 (£ 0.17) 2.06 (the best in 4.0%)
SPT_DD 1.33 4.87 (&£ 3.10) 18.75 (the best in 0.0%)
SPT_MCT 1.08 1.84 (£ 0.61) 3.43 (the best in 4.0%)
SRPT_MCT 1.09 1.87 (£ 0.59) 3.38 (the best in 0.0%)
SWRPT_MCT 1.08 1.88 (£ 0.59) 3.38 (the best in 2.0%)
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MPI experiments vs simulations
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» average difference: 8.9%
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Conclusion

» Key points:

» Realistic platform model
» Optimal offline algorithm
» Efficient online algorithm based on offline study

» Extensions:

» Extend the simulation to larger platform
» Bi-criteria
» Robustness
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Positive values

» Non-negative throughputs.

Vi<u<pVi<k<nVl<j<2n-1,
(k

» Non-negative buffers.

V1i<k<nVi<u<pVl<j<2n,

pM)—>u(tja tir1) >0 and ng)(tja tiy1) > 0.

(1)



Physical constraints

» Bounded link capacity.

Vi<j<2n-1,V1<u<p,

n 5
> At 1) 5 <
» Limited sending capacity of master.

Vi<j<2n-1,
n 500

M\:

u=1 k=1
» Bounded computing capacity.

Vi<j<2n—-1,V1<u<p,

n (k)
w
E P(uk)(tj, tin) =y <
S0
k=1 u

pMﬁu (4, tﬁrl)? <L

()



Buffer constraints

» Buffer initialization.

V1i<k<nVli<u<p,

B (ry = 0.

» Emptying Buffer.

V1<k<nVli<u<p,

B (d* ) = 0.

» Bounded size

V1< u<p,V1l<j<2n,



Tasks constraints

» Task conservation.

V1<k<nVli<j<2n—-1,V1<u<p,

B (t41) = BY (1) + (o) o (4, ti1

» Total number of tasks.

V1<k<n,

Z Z pM—>u

1<j<2n—-1 u=1
tj > r(k)
ti1 < dW

)= (L, ti1)) % (t+1—17).

(9)

1) % (41 — ) = W, (10)



Polyhedron

. k k

find psvl)—m(tja tj—‘rl)vpgl )(tjv tj+1)’

Vk,u,jsuchthat 1 < k<nl<u<p1<;j<2n-1

under the constraints (1), (2), (3), (4), (5), (6), (7), (8), (9) and (10)

(K)

A given max-stretch S’ is achievable if and only if the
Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function.



New constraints

» Bounded link capacity.

Vi<j<2n—1,V1<u<np,

5(k)
ZAMéu tj+1) 5 = < (a1 — )8 + (Bj+1 — B))



New constraints

» Bounded link capacity.

» Limited sending capacity of master.
Vl<j<2n-1,

Z ZAMHU ti11)6%) < B x ((aj11 — a;)S + (Bi11 — B)))

u=1 k=1



New constraints

» Bounded link capacity.
» Limited sending capacity of master.

» Bounded computing capacity.

Vi<j<2n—1,V1<u<np,

W(k)
ZA (tj, tj1) o < (j+1 = @))S + (B

- 5)



New constraints

» Bounded link capacity.
» Limited sending capacity of master.
» Bounded computing capacity.

» Total number of tasks.

V1<k<n,

P
> DA ) =W

1<j<2n—1 u=1

tp > k)

tin < d



New constraints

Bounded link capacity.

Limited sending capacity of master.

>
>
» Bounded computing capacity.
» Total number of tasks.

>

Task conservation.

Vi<k<nVli<j<2n—1V1<u<p,

k
B (ti11) = BY(t) + AL, (1, ti1) — AV (4, t41)



New constraints

vV V. vV VvV VY

v

v

Bounded link capacity.

Limited sending capacity of master.
Bounded computing capacity.

Total number of tasks.

Task conservation.

Non-negative buffer.

Buffer initialization.

Emptying Buffer.



New constraints

vV V. vV VvV VY

v

v

Bounded link capacity.

Limited sending capacity of master.
Bounded computing capacity.

Total number of tasks.

Task conservation.

Non-negative buffer.

Buffer initialization.

Emptying Buffer.

Bounded stretch
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