Offline and online master-worker scheduling
of concurrent bags-of-tasks
on heterogeneous platforms

Loris MARCHAL,

joint work with Anne BENOIT, Jean-Francois PINEAU,
Yves ROBERT and Frédéric VIVIEN

Laboratoire de I'Informatique du Parallélisme
Ecole Normale Supérieure de Lyon, France

graal working group, 28/02/2008

1/37

Object of the Study

» Bags-of-tasks application

|

>
>
>

independent tasks

large number of similar tasks

models embarrassingly parallel applications
argues for the use of wide distributed platforms

2/37

Object of the Study

» Bags-of-tasks application

|

>
>
>

independent tasks

large number of similar tasks

models embarrassingly parallel applications
argues for the use of wide distributed platforms

» Online scheduling

>

>

|

applications arrive at different time (release dates)
no knowledge on the future
no global makespan, try to lower the suffering of each user

2/37

Building on our previous results

» Large number of tasks = steady-state scheduling

» designed for large applications

» suited for heterogeneous platforms, multiple applications
(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

» optimal platform utilization: throughput maximization

» neglect transient phases (initialization/clean-up)

3/37

Building on our previous results

» Large number of tasks = steady-state scheduling

» designed for large applications

» suited for heterogeneous platforms, multiple applications
(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

» optimal platform utilization: throughput maximization

» neglect transient phases (initialization/clean-up)

» Online scheduling = maximum stretch minimization

> other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)
» stretch is a kind of price for sharing resources
> minimize the maximum stretch among applications:
give a guarantee on each application slowdown

3/37

Building on our previous results

» Large number of tasks = steady-state scheduling

» designed for large applications

» suited for heterogeneous platforms, multiple applications
(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

» optimal platform utilization: throughput maximization

» neglect transient phases (initialization/clean-up)

» Online scheduling = maximum stretch minimization

> other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)
» stretch is a kind of price for sharing resources
> minimize the maximum stretch among applications:
give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

3/37

Simple idea to bring things together

» Suppose we want to reach the maximum stretch S

4/37

Simple idea to bring things together

» Suppose we want to reach the maximum stretch S

» For a given application, we can compute its makespan “if it
was alone”: MS

4/37

Simple idea to bring things together

» Suppose we want to reach the maximum stretch S

» For a given application, we can compute its makespan “if it
was alone”: MS

» This gives a deadline:

deadline = release date + S x MS

4/37

Simple idea to bring things together

» Suppose we want to reach the maximum stretch S

» For a given application, we can compute its makespan “if it
was alone”: MS

» This gives a deadline:
deadline = release date + S x MS

» Each application has now a release date and a deadline.

4/37

Simple idea to bring things together

v

Suppose we want to reach the maximum stretch S

v

For a given application, we can compute its makespan “if it
was alone”: MS

v

This gives a deadline:

deadline = release date + S x MS

v

Each application has now a release date and a deadline.

v

Dates define intervals. . .
where we can apply steady-state relaxation!

4/37

QOutline

Framework

With a single bag-of-task application
Several bag-of-task applications: offline case
Discussion on models

Several bag-of-task applications: online case
Simulations and Experiments

Conclusion

5/37

QOutline

With a single bag-of-task application

6/37

Single bag-of-task application — context

» Master-Slave platform (heterogeneous):

Network
Links

‘Workers

7/37

Single bag-of-task application — context

» Master-Slave platform (heterogeneous):

Tasks Computation size: w (MFIo)
communication size: s ;J

Master

bandwidth b, (MB/s)

Worker P,
speed s, (MFlop/s)

‘Workers

7/37

Single bag-of-task application — context

» Master-Slave platform (heterogeneous):

Tasks Computation size: w (MFIo)
communication size: s ;J

Master

bandwidth b, (MB/s)

Worker P,
speed s, (MFlop/s)

‘Workers

» Bunch of identical tasks

7/37

Single bag-of-task application — context

» Master-Slave platform (heterogeneous):

Tasks Computation size: w (MFIo)
communication size: s SJ

Master

bandwidth b, (MB/s)

Worker P,
speed s, (MFlop/s)

‘Workers

» Bunch of identical tasks

» Computing optimal makespan: already difficult problem

7/37

Single bag-of-task application — context

» Master-Slave platform (heterogeneous):

Tasks Computation size: w (MFIo)
communication size: s SJ

Master

Network

Links bandwidth b, (MB/s)

Worker P,
speed s, (MFlop/s)

‘Workers

» Bunch of identical tasks
» Computing optimal makespan: already difficult problem

> Steady-state relaxation to get a lower bound

7/37

Single bag-of-task application — steady-state

Motivations:
» Assume the number of tasks is huge
» Forget about makespan (meaningless)

» Concentrate on throughput (fluid framework)

8/37

Single bag-of-task application — steady-state

Motivations:
» Assume the number of tasks is huge
» Forget about makespan (meaningless)

» Concentrate on throughput (fluid framework)

How it works:

» Consider average values:
“master sends 5.3 tasks per second to worker 3"

» Write constraints on these variables

» Optimize total throughput under these constraints
(with the help of linear programming)

» Reconstruct near-optimal schedule from average values

8/37

Single bag-of-task application — steady-state

Motivations:
» Assume the number of tasks is huge
» Forget about makespan (meaningless)

» Concentrate on throughput (fluid framework)

How it works:

» Consider average values:
“master sends 5.3 tasks per second to worker 3"

» Write constraints on these variables

» Optimize total throughput under these constraints
(with the help of linear programming)

» Reconstruct near-optimal schedule from average values
(we skip this step for now)

8/37

Single bag-of-task application — linear program

P
MAXIMIZE p = Z Pu

u=1
SUBJECT TO

pu— < 1 pu: throughput of worker P,
Sg p: Total throughput
— <1
Pu by —
P
)
:g:: ﬁh12§ <1

9/37

Single bag-of-task application — linear program

P
MAXIMIZE p = Z Pu

u=1
SUBJECT TO
puﬂ <1 pu: throughput of worker P,
Sg p: Total throughput
— <1
Pu by —

> it
Pu <1
u=1 B

Analytical solution

BE& . (su by
p—mln{57;m|n{w,w}}.

9/37

QOutline

Several bag-of-task applications: offline case

10/37

Offline multi-application — framework

For each application k (task of sizes w(k), 5(")), we have:
» a release date
» the optimal throughput (alone): p*(k)

~> a bound on the makespan alone:

MSk) > number of tasks)
~ optimal throughput — p*(k)

» not only a lower bound, rather an approximation. ..
We try to reach stretch S:

» deadline:

" P k)
deadline(K) = release date(K) + S8 x —®
p*

11/37

Time-intervals for target stretch

If we try to reach stretch S = 2:

Q&
¥ &
& %§§é
&\ <zy\0&\

12/37

Time-intervals for target stretch

If we try to reach stretch S = 2:

x® N
Q)g‘" %Q@’ <L
i X &
Q@ N %O N
1 1 1 t
il il il
1 1 1

12/37

Time-intervals for target stretch

If we try to reach stretch S = 2:

12/37

Time-intervals for target stretch

If we try to reach stretch S = 2:

12/37

Time-intervals for target stretch

If we try to reach stretch S = 2:

12/37

Time-intervals for target stretch

If we try to reach stretch S = 2:

time-interval

. without change_. ; . ¢

12/37

Resolution for a target stretch S

New variables:
» communication throughput ps\l/(,)_)u(tj, tjit1)

» computation throughput ,of,k)(tj, tit1)
» state of buffers: BL(,k)(tJ-)
(number of non-executed tasks at time t;)

New constraints:

» Complex (but straightforward) conservation laws between
throughputs and buffer state

» Assert that all tasks of an application are treated.
» Resource limitations
Set of linear constraints, defining a convex K(S).

K(S) non-empty < S feasible

13/37

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

» Basic binary search (with precision €), or

» Involved search among stretch-intervals:

d(S) =) 4 8 x Ms*(k).

d

S =1 >

t
14/37

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

» Basic binary search (with precision €), or

» Involved search among stretch-intervals:

d(S) =) 4 8 x Ms*(k).

d

d

S =1 >

t
14/37

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

» Basic binary search (with precision €), or

» Involved search among stretch-intervals:
d(S) =) 4 8 x Ms*(k).

S r r r3

S =1 >

t
14/37

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

» Basic binary search (with precision €), or

» Involved search among stretch-intervals:

d(S) =) 4 8 x Ms*(k).

55<

S4<
PO P

S =1

t
14/37

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

» Basic binary search (with precision €), or

» Involved search among stretch-intervals:

r

dX(8) = r) + & x Ms*(K)
n

r3

- no dates crossing
- linear evolution
Ss
Ss
S3
S

Binary search between stretch-interval

» Consider a stretch-interval between two critical values [Sa; Sp]

15/37

Binary search between stretch-interval

» Consider a stretch-interval between two critical values [Sa; Sp]

» Deadlines have a linear evolution

15/37

Binary search between stretch-interval

» Consider a stretch-interval between two critical values [Sa; Sp]
» Deadlines have a linear evolution

» Everything is linear !7?

15/37

Binary search between stretch-interval

» Consider a stretch-interval between two critical values [Sa; Sp]
» Deadlines have a linear evolution

» Everything is linear |7 Not really:
when computing what receives a buffer during a time-interval:

k
pS\ﬂLu(tj’ tj+1) X (Tend - 7—start)

Tends Tstart: linear function in S
~» quadratic constrains ®

15/37

Binary search between stretch-interval

» Consider a stretch-interval between two critical values [Sa; Sp]
» Deadlines have a linear evolution

» Everything is linear |7 Not really:
when computing what receives a buffer during a time-interval:

k
pS\ﬂLu(tj’ tj+1) X (Tend - Tstart)

Tends Tstart: linear function in S
~» quadratic constrains ®

» Switch from throughput to amount variables:

k k
AEWL u(tj? tJ'—i-l) - pg\ﬂ—») u(tj7 tj+1) X (tj 1 tj)
k k
AI(J)(tjv tj+1) - pfl)(tj7 tj+1) X (tj""l tj)

15/37

Binary search between stretch-interval

v

Consider a stretch-interval between two critical values [S,; Sp]

Deadlines have a linear evolution

v

v

Everything is linear |7 Not really:
when computing what receives a buffer during a time-interval:

P%Lu(tja tj—&-l) X (Tend - Tstart)

Tends Tstart: linear function in S
~» quadratic constrains ®

» Switch from throughput to amount variables:
k k
AL (5, ta1) = L (8) X (t1 — &)
k k
A t01) = p(E t41) X (41 — 1)

v

All the constraints are once again linear ©

15/37

QOutline

Discussion on models

16/37

Discussion on models

» Which communication/computation model have we been
using from the beginning ?

17/37

Discussion on models

» Which communication/computation model have we been
using from the beginning 7

» My favorite over-classical one-port model ?

(a processor sends/receives one message at a time, and can overlap the
communications by computations)

17/37

Discussion on models

» Which communication/computation model have we been
using from the beginning 7

» My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

» No! no schedule reconstructed from the linear programs @

17/37

Discussion on models

» Which communication/computation model have we been
using from the beginning 7

» My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the
communications by computations)

» No! no schedule reconstructed from the linear programs @

» Solution of a linear program : fluid throughput pf,k), assumes

> time-sharing for communication and computation
» “Synchronous Start” for communication and computation

17/37

Discussion on models

» Which communication/computation model have we been
using from the beginning 7
» My favorite over-classical one-port model ?

(a processor sends/receives one message at a time, and can overlap the

communications by computations)

» No! no schedule reconstructed from the linear programs @

» Solution of a linear program : fluid throughput pf,k), assumes

> time-sharing for communication and computation
» “Synchronous Start” for communication and computation

» Nice model for scheduling, but far from reality:

» no data dependency (!)
» Concurrent applications
» Perfect time-sharing for computation and communication (!)

17/37

Discussion on models

» Which communication/computation model have we been
using from the beginning 7

» My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

» No! no schedule reconstructed from the linear programs @

» Solution of a linear program : fluid throughput pf,k), assumes

> time-sharing for communication and computation
» “Synchronous Start” for communication and computation

» Nice model for scheduling, but far from reality:

» no data dependency (!)
» Concurrent applications
» Perfect time-sharing for computation and communication (!)

» We have to come back to the “reality”

17/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

ty
1) x —
(nk +1) o
nk: number of task from application k already scheduled
[m] = = =

18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

ty
1) x —
(nk +1) o
nk: number of task from application k already scheduled
[m] = = =

18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

ty
1) x —
(nk +1) o
nk: number of task from application k already scheduled
[m] = = =

18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k
» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

ty
1) x —
(nk +1) o
nk: number of task from application k already scheduled
[m] = = =

18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k
» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

ty
1) x —
(nk +1) o
nk: number of task from application k already scheduled
[m] = = =

18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

tk
1) x —
(nk +1) o
nk: number of task from application k already scheduled
18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

tk
1) x —
(nk +1) o
nk: number of task from application k already scheduled
18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

tk
1) x —
(nk +1) o
nk: number of task from application k already scheduled
18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

tk
1) x —
(nk +1) o
nk: number of task from application k already scheduled
18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

tk
1) x —
(nk +1) o
nk: number of task from application k already scheduled
18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

At each step, choose application which minimize
73
ne+1) x —
(nk +1) o

nk: number of task from application k already scheduled
18/37

One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

tk
1) x —
(nk +1) o
nk: number of task from application k already scheduled
18/37

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

19/37

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

termination of T in fluid schedule

fluid schedule

atomic schedule

T time

termination of T in atomic schedule

19/37

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (M:
Makespan):

1. Reverse the time: t~ M — t
2. Apply 1D algorithm

3. Reverse the time one more time

19/37

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (M:
Makespan):

1. Reverse the time: t~ M — t
2. Apply 1D algorithm

3. Reverse the time one more time

Lemma (1D-inv).
In the 1D-inv schedule, a task does not start earlier than in the
fluid schedule, and 1D-inv has a makespan < M.

19/37

Back to the one-port model

From a fluid schedule (of communications and computations):
1. Round every quantities down to integer values

2. Shift all computations by one task (to cope with
dependencies)

3. Apply 1D algorithm to communications
— communications finish in time

4. Apply 1D-inv algorithm to computations
— computations do not start in advance

Results:
» We guarantee that data dependencies are satisfied
» Some tasks may be forgotten: at most a fixed number
» Take some time at the end of an application to process the

missing tasks

20/37

Back to the one-port model

Asymptotic optimality: when the granularity of the application gets
smaller (lots of small tasks), the one-port makespan gets closer to
the fluid makespan.

» Construction of an atomic schedule for performance guarantee
» In practice:

» 1D schedule for communications
» Earliest Deadline First for computations

21/37

QOutline

Several bag-of-task applications: online case

22/37

Online multi-application — framework

» No available information about future submission

» Information for application k available at release date r(k)

Adaptation:

» Consider only available information (already submitted
applications)

» Restart offline algorithm at each release date (with updated
information)

» online heuristic named CBS3M-online

> we also test the offline algorithm: CBS3M-offline

23/37

Online multi-application — framework

Classical heuristics to prioritize applications:

» First In First Out (FIFO)

» Shortest Processing Time (SPT)

» Shortest Remaining Processing Time (SRPT)

» Shortest Weighted Remaining Processing Time (SWRPT)
(4 heuristic to chose workers: RR, MCT or DD)

Previous heuristics do not mix applications,
» Master-Worker Multi-Application (MWMA)

(previous work, designed for simultaneous submissions)

24/37

QOutline

Simulations and Experiments

25/37

Simulations and Experiments — settings

Experiments:
» GDSDMI cluster (8 workers)
» MPI communications

» Artificially slow-down communication and/or computations to
emulate heterogeneity

Simulation:

» SimGrid simulator
» Two scenarios:

1. simulate MPI experiments
2. extensive simulations with larger applications

26/37

Simulations results

Wbt

—3ANIN440°4d3°INESED
—3INIT4407 04147 INESTD
—3INITNO 4d3 WESED
- 3INITNO O4Id"INESED
- SIN"VINMIN

- LaN VIAMIN

- Ad LdIMS

- LD LddMS

- dd LddMS

-ada L1dds

LD LdYS

- LdYS

-ada Lds

- 1D L1dS

-dd 1dS

-aao4did

- LD O4Id

-dy°04Id

70

f f f f f

o o o o o o

T3} < o N —

031941S-XeW dAIIE|AU

27/37

Simulations results

—{TH-3NIN440"4d3"WESDD

— [T H 3INIT440 04I4 NESED

—{T1 INITNO 4A3 INESAD
—TH INITNO O4I4"INESED

FSIN"YINMIN
- LANVINMIN
Fad LddMmsS

— [T+ IDWLdIMS

-y LdIMS
- ad L1dyds

— [T+ IDWLdYS

49" 1LddS
Aad 1ds

— [T+ 1OWLdS

-dd LdS
adaodid
R SlANOEIE]
RS NOEIE]

031941S-XeW dAIIE|AU

27/37

Simulations results

—3NIT440 4A3"NESTD
- 3NIT440° 04147 INESED
—3INITNO 403 WESED
- 3INITNO O4Id"INESED
- SIN"VINMIN

- LaN VIAMIN

-Ad LdIMS

— [T DWW LAYMS

- dd" LdIMS
-Aada Ldds

— [T LW LANS

- LdYS
-ad 1ds

— [T+ 1OWLdS

-dd 1dS
—-aa odid
- 1OW OdId
-d9°04Id

031941S-XeW dAIIE|AU

27/37

Simulations results — variation with load

3.5 J

MWMA NBT —— |

SWRPT_MCT -

2.5 F SRPT_MCT --+--
?\‘:\. CBS3M_EDF _OFFLINE ---&--

| ¥Fese. . CBS3M_EDF_ONLINE -o--

TS

average max_stretch / optimal max_stretch

20 |
$ T
¥ R PO
1512 |
E:::gtya---@-_-,@.. .
1 | ‘- l -‘@-..?:::@'::@I'::@-::@::I@'::@:::@I-::Q |

4 5 6 7 8 9 10
load (optimal stretch)

28/37

Gantt chart example: FIFO + RR

o
)
g
=)
©u
=
S

750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500
I I I I I I I I I I I I I

appli 1
appli 2
appli 3
appli 4
appli 5

appli 6

appli 7
appli 8
appli 9
appli 10
appli 11

appli 12

proc 1
proc 2
proc 3
proc 4
proc 5
proc 6

proc 7

proc 8

29/37

Gantt chart example: SRPT + MCT

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750
I I I I I I I

3000
L L L

appli 1
appli 2
appli 3
appli 4
appli 5
appli 6
appli 7

appli 8

appli 9
appli 10
appli 11

appli 12

e N O£, SRR,

proc 2

mes | by bbb

proc 4

proc 5

mee |l Wi i

proc 7

proc 8

30/37

Gantt chart example: CBS3M + EDF (online)

0 250 500 750 1000 1250 1500 1750 2000 2250
I I I I I I I

|
appli 1
appli 2
appli 3
appli 4

appli 5
appli 6
appli 7
appli 8

appli 9

appli 10
appli 11
appli 12

TRTRAL MU VAL % WA
TR T I AT

T 8 2T B % B %®§ %
g 8 3 8 3 8 3 &
g 8 8 8 8 8 &8 8
® N\ o wm A W N =

fu%%'n‘n‘n'h Wiftih ekl okl

31/37

Simulations results — other metrics

Sum-stretch

22 T T T T T T

T T T
m SRPT_MCT —+—
SWRPT_MCT -
*. *, e & X MWMA_NBT ------
oL % i o . CBS3M_EDF_OFFLINE & |
% "% CBS3M_EDF_ONLINE -
< § i
S ; ; %
o L %]
5 18 %
I
3
5
3
g 16 4
2
=
5
g
G 14 4
£
5
3
o
<3
g 12} 4
]
g
&
1t 4
08

load (optimal stretch)
> best strategy: SWRPT (known to be optimal)
» CBSSM within 30-40%

32/37

Simulations results — other metrics

Makespan

14 T T T T T T e - T
I
SWRPT_MCT ---%-—-
MA_NBT ---%--
135 | CBS3M_EDF_OFFLINE &
S3M_EDF_ONLINE ----
c 13 §
§
g
?
4
g 125 4
3
8
K]
s 12 g
g
b
8
<
]
E 115 g
°
&
=
]
> * *,
I S A " * B
105 * ,
b e o L L L

4 5 6 7 8 9 10 11 12
load (optimal stretch)

» best strategy: CBS3M

32/37

Simulations results — other metrics

19 T T T T T T T T T
X SRPT_MCT —+—
SWRPT_MCT -
na MWMA_NBT -
43 | CBS3M_EDF_OFFLINE &~ |
CBS3M_EDF_ONLINE -~
17+ g
z
s ji
16| 4
] i
£
= !
8 15} 4
=
2
PRV E
g 3
o e .
g 13} * -_ 4
(3 *
&
12 R]
% *
11} * * L
Boomef gy pom
B e e e
a i = it - i T . . .
4 5 6 7 8 9 10 11 12

load (optimal stretch)

» best strategy: CBS3M

32/37

Simulations results — other metrics

Sum-flow
15 T T T T T T T T T
SRPT_MCT —+—
SWRPT_MCT —x—
145 | * MWMA_NBT - |
CBS3M_EDF_OFFLINE &
Y S CBS3M_EDF_ONLINE =
14 X L &3 Tx, « 4
H L o ¥]
2 13 -
£
3
£ 13f]
2
2
3 1)]
i
3
3 12]
°
s
o
g 115]
&
11t]
105 -]

4 5 6 7 8 9 10 11 12
load (optimal stretch)

> best strategy: CBS3M/ SWRPT

32/37

MPI experiments results

CBSSM EDF OFFLINE

|
X
+

CBS3M EDF ONLINE

MWMA NBT
SWRPT MCT 4

+ x mq_|

4 ++ X

i)

4012415-XBW DAIIE|RA

5

2
15

1

10

4

load (optimal max-stretch)

33/37

MPI experiments results

Algorithm minimum average (&£ stddev) maximum (fraction of best result)
CBS3M_EDF_OFFLINE 1.04 1.30 (£ 0.13) 1.63 (the best in 38.0%)
CBS3M_EDF_ONLINE 1.02 1.41 (£ 0.30) 2.09 (the best in 30.0%)
CBS3M_FIFO_OFFLINE 1.04 1.38 (£ 0.28) 2.97 (the best in 12.0%)
CBS3M_FIFO_ONLINE 1.02 1.46 (£ 0.26) 1.96 (the best in 6.0%)

FIFO_MCT 1.10 1.81 (& 0.60) 415 (the best in 4.0%)

FIFO_RR 1.35 4.99 (& 3.46) 19.50 (the best in 0.0%)

MWMA_MS 1.22 2.29 (£ 0.56) 4.05 (the best in 0.0%)
MWMA_NBT 1.13 1.50 (£ 0.17) 2.06 (the best in 4.0%)
SPT_DD 1.33 4.87 (&£ 3.10) 18.75 (the best in 0.0%)
SPT_MCT 1.08 1.84 (£ 0.61) 3.43 (the best in 4.0%)
SRPT_MCT 1.09 1.87 (£ 0.59) 3.38 (the best in 0.0%)
SWRPT_MCT 1.08 1.88 (£ 0.59) 3.38 (the best in 2.0%)

34/37

MPI experiments vs simulations

0.14

0.12

frequency (%)

0 10 20 30 40 50 60 70
relative deviation (%)

» average difference: 8.9%

. S |Sexp_ simu| . 0

Relative deviation: — s » standard deviation: 9.5%
exp

» median value: 5.5%

35/37

QOutline

Conclusion

36/37

Conclusion

» Key points:

» Realistic platform model
» Optimal offline algorithm
» Efficient online algorithm based on offline study

» Extensions:

» Extend the simulation to larger platform
» Bi-criteria
» Robustness

37/37

Positive values

» Non-negative throughputs.

Vi<u<pVi<k<nVl<j<2n-1,
(k

» Non-negative buffers.

V1i<k<nVi<u<pVl<j<2n,

pM)—>u(tja tir1) >0 and ng)(tja tiy1) > 0.

(1)

Physical constraints

» Bounded link capacity.

Vi<j<2n-1,V1<u<p,

n 5
> At 1) 5 <
» Limited sending capacity of master.

Vi<j<2n-1,
n 500

M\:

u=1 k=1
» Bounded computing capacity.

Vi<j<2n—-1,V1<u<p,

n (k)
w
E P(uk)(tj, tin) =y <
S0
k=1 u

pMﬁu (4, tﬁrl)? <L

()

Buffer constraints

» Buffer initialization.

V1i<k<nVli<u<p,

B (ry = 0.

» Emptying Buffer.

V1<k<nVli<u<p,

B (d*) = 0.

» Bounded size

V1< u<p,V1l<j<2n,

Tasks constraints

» Task conservation.

V1<k<nVli<j<2n—-1,V1<u<p,

B (t41) = BY (1) + (o) o (4, ti1

» Total number of tasks.

V1<k<n,

Z Z pM—>u

1<j<2n—-1 u=1
tj > r(k)
ti1 < dW

)= (L, ti1)) % (t+1—17).

(9)

1) % (41 —) = W, (10)

Polyhedron

. k k

find psvl)—m(tja tj—‘rl)vpgl)(tjv tj+1)’

Vk,u,jsuchthat 1 < k<nl<u<p1<;j<2n-1

under the constraints (1), (2), (3), (4), (5), (6), (7), (8), (9) and (10)

(K)

A given max-stretch S’ is achievable if and only if the
Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function.

New constraints

» Bounded link capacity.

Vi<j<2n—1,V1<u<np,

5(k)
ZAMéu tj+1) 5 = < (a1 —)8 + (Bj+1 — B))

New constraints

» Bounded link capacity.

» Limited sending capacity of master.
Vl<j<2n-1,

Z ZAMHU ti11)6%) < B x ((aj11 — a;)S + (Bi11 — B)))

u=1 k=1

New constraints

» Bounded link capacity.
» Limited sending capacity of master.

» Bounded computing capacity.

Vi<j<2n—1,V1<u<np,

W(k)
ZA (tj, tj1) o < (j+1 = @))S + (B

- 5)

New constraints

» Bounded link capacity.
» Limited sending capacity of master.
» Bounded computing capacity.

» Total number of tasks.

V1<k<n,

P
> DA) =W

1<j<2n—1 u=1

tp > k)

tin < d

New constraints

Bounded link capacity.

Limited sending capacity of master.

>
>
» Bounded computing capacity.
» Total number of tasks.

>

Task conservation.

Vi<k<nVli<j<2n—1V1<u<p,

k
B (ti11) = BY(t) + AL, (1, ti1) — AV (4, t41)

New constraints

vV V. vV VvV VY

v

v

Bounded link capacity.

Limited sending capacity of master.
Bounded computing capacity.

Total number of tasks.

Task conservation.

Non-negative buffer.

Buffer initialization.

Emptying Buffer.

New constraints

vV V. vV VvV VY

v

v

Bounded link capacity.

Limited sending capacity of master.
Bounded computing capacity.

Total number of tasks.

Task conservation.

Non-negative buffer.

Buffer initialization.

Emptying Buffer.

Bounded stretch

	Main Part
	Framework
	With a single bag-of-task application
	Several bag-of-task applications: offline case
	Discussion on models
	Several bag-of-task applications: online case
	Simulations and Experiments
	Conclusion
	Extra material
	
	

