#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

# Multi-threaded Caching Problem

WAGNER FREDERIC DENIS TRYSTRAM HAIFENG XU

April 3, 2008



## Travel to some cities ...

We have a database who can give you some advice.

- Chinese restaurant, sporting match
- Italian food, sporting match ····
- Chinese restaurant, a lot of people, shopping, culture, ···

► Grenoble · · ·

- Milan · · ·
- Paris ···

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

## Travel to some cities ...

We have a database who can give you some advice.

- Chinese restaurant, sporting match
- Italian food, sporting match ····
- Chinese restaurant, a lot of people, shopping, culture, ···

► Grenoble ····

- Milan · · ·
- ► Paris · · ·

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

## Travel to some cities ...

We have a database who can give you some advice.

### Chinese restaurant, sporting match

- Italian food, sporting match ···
- Chinese restaurant, a lot of people, shopping, culture, ···

► Grenoble · · ·

- Milan · · ·
- ► Paris · · ·

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

## Travel to some cities . . .

We have a database who can give you some advice.

### Chinese restaurant, sporting match

- Italian food, sporting match ···
- Chinese restaurant, a lot of people, shopping, culture, ···

Grenoble ···

- Milan · · ·
- ► Paris · · ·

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Travel to some cities ...

We have a database who can give you some advice.

- Chinese restaurant, sporting match
- Italian food, sporting match ···
- Chinese restaurant, a lot of people, shopping, culture, ···

- Grenoble · · ·
- Milan · · ·
- ▶ Paris · · ·

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Travel to some cities ...

We have a database who can give you some advice.

- Chinese restaurant, sporting match
- Italian food, sporting match ···
- Chinese restaurant, a lot of people, shopping, culture, ···

- ▶ Grenoble · · ·
- Milan · · ·
- ▶ Paris · · ·

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Travel to some cities ...

We have a database who can give you some advice.

- Chinese restaurant, sporting match
- Italian food, sporting match ···
- Chinese restaurant, a lot of people, shopping, culture, ···

- ► Grenoble · · ·
- Milan · · ·
- Paris ····

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Travel to some cities ...

We have a database who can give you some advice.

- Chinese restaurant, sporting match
- Italian food, sporting match ···
- Chinese restaurant, a lot of people, shopping, culture, ···

- ► Grenoble · · ·
- Milan · · ·
- Paris · · ·

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Travel to some cities . . .

We have a database who can give you some advice.

- Chinese restaurant, sporting match
- Italian food, sporting match ···
- Chinese restaurant, a lot of people, shopping, culture, ···

Summer 2008, welcome to Beijing!

- ▶ Grenoble · · ·
- Milan · · ·
- Paris · · ·

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Travel to some cities ...

We have a database who can give you some advice.

- Chinese restaurant, sporting match
- Italian food, sporting match ···
- Chinese restaurant, a lot of people, shopping, culture, ···

In the view of database, how could I do better?

► Grenoble · · ·

- Milan · · ·
- Paris · · ·

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Travel to some cities ...

We have a database who can give you some advice.

- Chinese restaurant, sporting match
- Italian food, sporting match ···
- Chinese restaurant, a lot of people, shopping, culture, ···

In the view of database, how could I do better?

- ▶ Grenoble · · ·
- Milan · · ·
- Paris · · ·

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Travel to some cities ...

We have a database who can give you some advice.

- Chinese restaurant, sporting match
- Italian food, sporting match ···
- Chinese restaurant, a lot of people, shopping, culture, ···

In the view of database, how could I do better?

- ▶ Grenoble · · ·
- Milan · · ·
- Paris · · ·

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

what to talk ...

### ► A Model of Practical Problem: Hypercarte Project

- Caching Problem
- Multi-threaded Caching Problem
- ► To Be Continued

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

what to talk ...

A Model of Practical Problem: Hypercarte Project

### Caching Problem

- Multi-threaded Caching Problem
- ► To Be Continued

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

what to talk ...

- A Model of Practical Problem: Hypercarte Project
- Caching Problem
- Multi-threaded Caching Problem
- ► To Be Continued

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

what to talk ...

- A Model of Practical Problem: Hypercarte Project
- Caching Problem
- Multi-threaded Caching Problem
- To Be Continued

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks



### Request is a DAG(Directed Acyclic Graph)

- m parallel machines
- Objective:  $C_{max}$  (Scheduling Problem
- Some of them request the same task
- Store the results of some tasks?

Multi-threaded Caching Problem

MOAIS

#### outline

#### Practical Problem: Hyper Project

To simplify . . .

Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks



Request is a DAG(Directed Acyclic Graph)

- m parallel machines
- ▶ Objective: *C<sub>max</sub>* (Scheduling Problem
- Some of them request the same task
- Store the results of some tasks?

Multi-threaded Caching Problem

MOAIS

#### outline

#### Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks



- Request is a DAG(Directed Acyclic Graph)
- m parallel machines
- ▶ Objective: *C<sub>max</sub>* (Scheduling Problem)
- Some of them request the same task
- Store the results of some tasks?

Multi-threaded Caching Problem

MOAIS

#### outline

#### Practical Problem: Hyper Project

To simplify . . .

Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks



- Request is a DAG(Directed Acyclic Graph)
- m parallel machines
- ▶ Objective: C<sub>max</sub> ( Scheduling Problem )
- Some of them request the same task

Store the results of some tasks?

#### Multi-threaded Caching Problem

MOAIS

#### outline

#### Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks



- Request is a DAG(Directed Acyclic Graph)
- m parallel machines
- ▶ Objective: C<sub>max</sub> ( Scheduling Problem )
- Some of them request the same task
- Store the results of some tasks?

Multi-threaded Caching Problem

MOAIS

#### outline

#### Practical Problem: Hyper Project

To simplify . . .

Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

Because original scheduling problem is hard, so we simplified it a bit  $\ldots$ 

► DAG
 ► m machines
 ► C<sub>max</sub>
 ► Cache
 ► Cache
 ► DAG
 ► one chain
 ► one machine
 ► Cache

Thus, we get caching problem.

ション ふゆ アメリア メリア しょうくう

Multi-threaded Caching Problem

MOAIS

outline

Practical Problem: Hype Project

To simplify . . .

Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Because original scheduling problem is hard, so we simplified it a bit  $\ldots$ 

### ► DAG

- m machines
- ► C<sub>max</sub>
- Cache

- one chainone machine
  - ► C<sub>max</sub>
- Cache

Thus, we get caching problem.

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへの

Because original scheduling problem is hard, so we simplified it a bit  $\ldots$ 

### DAG

- ▶ m machines
- ► C<sub>max</sub>
- Cache

### ► one chain

- one machine
- ► C<sub>max</sub>
- Cache

Thus, we get caching problem.

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

Because original scheduling problem is hard, so we simplified it a bit . . .

> DAG one chain m machines one machine ► C<sub>max</sub> ► Cmax ► Cache Cache

Multi-threaded Caching Problem

MOAIS

To simplify . . .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Because original scheduling problem is hard, so we simplified it a bit  $\ldots$ 

DAG
 m machines
 C<sub>max</sub>
 Cache
 Cache

Multi-threaded Caching Problem

MOAIS

outline

Practical Problem: Hype Project

To simplify . . .

Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

Because original scheduling problem is hard, so we simplified it a bit  $\ldots$ 

DAG
m machines
C<sub>max</sub>
Cache
one chain
one machine
C<sub>max</sub>
Cache

Thus, we get caching problem.

Multi-threaded Caching Problem

MOAIS

outline

Practical Problem: Hype Project

To simplify . . .

Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへの

Because original scheduling problem is hard, so we simplified it a bit  $\ldots$ 

DAG
m machines
one machine
c<sub>max</sub>
Cache
Cache

Thus, we get caching problem.

Multi-threaded Caching Problem

MOAIS

outline

Practical Problem: Hype Project

To simplify . . .

Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

・ロト・日本・モート・ヨー シタの

Because original scheduling problem is hard, so we simplified it a bit . . .

- DAG one chain
- m machines
- ► Cmax
- Cache

- ▶ one machine
- ► Cmax
- Cache

Thus, we get caching problem.

#### Multi-threaded Caching Problem

MOAIS

To simplify . . .

 $\{T_1, T_2, \ldots, T_L\}$ 

Cache: K $g: N \to \{1, \dots, L\}$ 

### Input

## A set of tasks

- processing time:  $P_i$
- size of result:  $S_i$
- One processor
- ► A cache of capacity K
  - $\sum_{T_i \in Cache} S_i \leq K$
- Request chain: g

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\{T_1, T_2, \ldots, T_L\}$ 

Cache: K

- $g\colon N\to\{1,\ldots,L\}$
- $T_{g(1)} \cdots T_{g(N)}$

### Input

- A set of tasks
  - ▶ processing time: *P<sub>i</sub>*
  - size of result:  $S_i$
- One processor
- ► A cache of capacity K
  - $\sum_{T_i \in Cache} S_i \leq K$
- Request chain: g

Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

・ロト ・四ト ・ヨト ・ヨト ・ロト

 $\{T_1, T_2, \ldots, T_L\}$ 

Cache: K

- $g\colon N\to\{1,\ldots,L\}$
- $T_{g(1)}$   $\cdots$   $T_{g(N)}$

### Input

- A set of tasks
  - ▶ processing time: *P<sub>i</sub>*
  - size of result:  $S_i$
- One processor
- A cache of capacity K
- Request chain: g

Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

 $\{T_1, T_2, \ldots, T_L\}$ 

Cache: K

- $g: N \to \{1, \ldots, L\}$
- $T_{g(1)}$  ···  $T_{g(N)}$

### Input

- A set of tasks
  - ▶ processing time: *P*<sub>i</sub>
  - size of result:  $S_i$
- One processor
- ► A cache of capacity K
  ∑<sub>Ti∈ Cache</sub> S<sub>i</sub> ≤ K
- Request chain: g

Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

 $\{T_1, T_2, \ldots, T_L\}$ 

Cache: K

 $g: N \to \{1, \ldots, L\}$ 

## $T_{g(1)}$ ··· $T_{g(N)}$

### Input

- A set of tasks
  - ▶ processing time: *P*<sub>i</sub>
  - size of result:  $S_i$
- One processor
- ► A cache of capacity K
  - $\sum_{T_i \in Cache} S_i \leq K$
- Request chain: g

Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

・ロト ・日 ・ モー・ ・ 日 ・ うくの

 $\{T_1, T_2, \ldots, T_L\}$ 

Cache: K

 $g: N \to \{1, \ldots, L\}$ 

| 'g(1)   'g(N) |
|---------------|
|---------------|

### Input

- A set of tasks
  - processing time: P<sub>i</sub>
  - size of result:  $S_i$
- One processor
- ► A cache of capacity K

• 
$$\sum_{T_i \in Cache} S_i \leq K$$

Request chain: g

Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...
### Description of Caching Problem

 $\{T_1, T_2, \ldots, T_L\}$ 

Cache: K

 $g: N \to \{1, \dots, L\}$  $\boxed{T_{g(1)} \mid \cdots \mid T_{g(N)}}$ 

### Input

- A set of tasks
  - ▶ processing time: *P*<sub>i</sub>
  - size of result:  $S_i$
- One processor
- ► A cache of capacity K

• 
$$\sum_{T_i \in Cache} S_i \leq K$$

▶ Request chain: g

$$\min: C_{max} = \sum_{i=1}^{N} P_{g(i)} \times X_{g(i)}$$

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

### Description of Caching Problem

 $\{T_1, T_2, \dots, T_L\}$ Cache: K  $g: N \to \{1, \dots, L\}$   $T_{g(1)} \quad \cdots \quad T_{g(N)}$ 

### Input

- A set of tasks
  - processing time: P<sub>i</sub>
  - size of result:  $S_i$
- One processor
- ► A cache of capacity K

• 
$$\sum_{T_i \in Cache} S_i \leq K$$

Request chain: g

$$\min: C_{max} = \sum_{i=1}^{N} P_{g(i)} \times X_{g(i)}$$

 $X_{g(i)} = \left\{ \begin{array}{ll} 0 & \text{if task } T_{g(i)} \text{ is in the cache in the } i_{th} \text{ iteration} \\ 1 & \text{otherwise} \end{array} \right.$ 

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

### A B C A B C C C B

processing time:

cache:

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

・ロト・日本・日本・日本・日本・日本

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

### A B C A B C C C C B

processing time:

cache:

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

・ロト・日本・日本・日本・日本・日本

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

### A B C A B C C C C B

processing time:

### cache:

#### ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

### A B C A B C C C B

processing time:

cache:

А

 $P_A$ 

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

A B C A B C C C C B

processing time:

cache:

ΑB

 $P_A + P_B$ 

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

A B C A B C C C C B

processing time:

cache:

ΑB

$$P_A + P_B + P_C$$

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

A B C A B C C C C B

processing time:

cache:

A B

$$P_A + P_B + P_C$$

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

A B C A B C C C C B

processing time:

cache:

A B

$$P_A + P_B + P_C$$

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

A B C A B C C C C B

processing time:

cache:

 $P_A + P_B + P_C + P_C$ 

С

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

A B C A B C C C B

processing time:

cache:

$$P_A + P_B + P_C + P_C$$

С

Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

A B C A B C C C B

processing time:

cache:

$$P_A + P_B + P_C + P_C$$

С

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

A B C A B C C C C B

processing time:

cache:

$$P_A + P_B + P_C + P_C$$

С

Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

### A B C A B C C C C B

processing time:

cache:

 $P_A + P_B + P_C + P_C + P_B$ 

### С

Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

| TASK | SIZE | TIME |
|------|------|------|
| A    | 1    | 2    |
| В    | 1    | 1    |
| С    | 2    | 1    |

We have a cache of capacity 2

A B C A B C C C B

processing time:

cache:



 $P_A + P_B + P_C + P_C + P_B$ 

we save:  $P_A + P_B + 3P_C$ 

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

### Previous Results

The complexity depends on *the processing time* and *the size of results*.

|               |   | TIME | Complexity |
|---------------|---|------|------------|
| Cost Model    | 1 |      | Р          |
| Fault Model   |   | 1    | ?          |
| General Model |   |      | NP-hard    |

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Previous Results

The complexity depends on *the processing time* and *the size of results*.

|               | SIZE           | TIME           | Complexity |
|---------------|----------------|----------------|------------|
| Cost Model    | 1              | $\mathbb{Z}^+$ | Р          |
| Fault Model   | $\mathbb{Z}^+$ | 1              | ?          |
| General Model |                |                | NP-hard    |

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Previous Results

The complexity depends on *the processing time* and *the size of results*.

|               | SIZE           | TIME           | Complexity |
|---------------|----------------|----------------|------------|
| Cost Model    | 1              | $\mathbb{Z}^+$ | Р          |
| Fault Model   | $\mathbb{Z}^+$ | 1              | ?          |
| General Model | $\mathbb{Z}^+$ | $\mathbb{Z}^+$ | NP-hard    |

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Previous Results

The complexity depends on *the processing time* and *the size of results*.

|               | SIZE           | TIME           | Complexity |
|---------------|----------------|----------------|------------|
| Cost Model    | 1              | $\mathbb{Z}^+$ | Р          |
| Fault Model   | $\mathbb{Z}^+$ | 1              | ?          |
| General Model | $\mathbb{Z}^+$ | $\mathbb{Z}^+$ | NP-hard    |

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

# Caching problem is a little far away from our original model, so we extend caching problem a bit.

We extend the number of request chain.

- ► DAG
- m machines
- ► C<sub>max</sub>
- Cache

- ► ONE chain
- one machines
- ► C<sub>max</sub>
- Cache

- Several Chains
- one machines
- ► C<sub>max</sub>
- ► Cache

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### **Caching Problem**

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

・ロト・日本・日本・日本・日本・日本

# Caching problem is a little far away from our original model, so we extend caching problem a bit.

We extend the number of request chain.

- DAG
- m machines
- ► C<sub>max</sub>
- Cache

- ► ONE chain
- one machines
- ► C<sub>max</sub>
- Cache

- Several Chains
- one machines
- ► C<sub>max</sub>
- Cache

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

・ロト・日本・日本・日本・日本・日本

Caching problem is a little far away from our original model, so we extend caching problem a bit.

We extend the number of request chain.

- DAG
- m machines
- ► C<sub>max</sub>
- Cache

- ONE chain
- one machines
- ► C<sub>max</sub>
- Cache

- Several Chains
- one machines
- ► C<sub>max</sub>
- Cache

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Caching problem is a little far away from our original model, so we extend caching problem a bit.

We extend the number of request chain.

- DAG
- m machines
- ► C<sub>max</sub>
- Cache

- ONE chain
- one machines
- ► C<sub>max</sub>
- Cache

- Several Chains
- one machines
- ► C<sub>max</sub>
- Cache

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

#### Caching Problem

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

・ロト・日本・日本・日本・日本・日本

Caching problem is a little far away from our original model, so we extend caching problem a bit. We extend the number of request chain.

- DAG
- m machines
- ► C<sub>max</sub>
- Cache

- ONE chain
- one machines
- ► C<sub>max</sub>
- Cache

- Several Chains
- one machines
- ► C<sub>max</sub>
- Cache

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Cache of capacity K

$$S_{task} = \{T_1, \ldots, T_L\}$$

$$g: Q imes N o \{1, \dots, L\}$$

 $T_{g(Q,1)} \mid T_{g(Q,2)} \mid T_{g(Q,3)} \mid T_{g(Q,N_Q)}$ 

- Which chain should be served each iteration?
- Whether to store the result after serving it?

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト の Q ()

Cache of capacity K

$$S_{task} = \{T_1, \ldots, T_L\}$$

$$g: Q \times N \rightarrow \{1, \dots, L\}$$

| $T_{g(1,1)}$ | $T_{g(1,2)}$ | $T_{g(1,3)}$   | $T_{g(1,N_1)}$ |
|--------------|--------------|----------------|----------------|
| $T_{g(2,1)}$ | $T_{g(2,2)}$ | $T_{g(2,N_2)}$ |                |
| :            |              |                | _              |

### $T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,N_Q)}$

- Which chain should be served each iteration?
- Whether to store the result after serving it?

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Cache of capacity  ${\it K}$ 

$$S_{task} = \{T_1, \ldots, T_L\}$$

$$g: Q \times N \to \{1, \ldots, L\}$$

$$T_{g(Q,1)} | T_{g(Q,2)} | T_{g(Q,3)} | T_{g(Q,N_Q)}$$

Which chain should be served each iteration?

Whether to store the result after serving it?

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

・ロト ・日 ・ モー・ モー・ うくの

Cache of capacity  ${\it K}$ 

$$S_{task} = \{T_1, \ldots, T_L\}$$

$$g: Q \times N \rightarrow \{1, \ldots, L\}$$

$$T_{g(Q,1)} | T_{g(Q,2)} | T_{g(Q,3)} | T_{g(Q,N_Q)}$$

- Which chain should be served each iteration?
- Whether to store the result after serving it?

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Idea

$$T_{g(1,1)}$$
  $T_{g(1,2)}$   $T_{g(1,3)}$   $T_{g(1,Y_1)}$   $T_{g(1,N_1)}$ 

$$T_{g(i,1)} \mid T_{g(i,Y_i-1)} \mid T_{g(i,Y_i)} \mid T_{g(i,N_i)}$$

$$T_{g(Q,1)} \ T_{g(Q,2)} \ T_{g(Q,3)} \ T_{g(Q,\textbf{Y}_{\textbf{Q}})} \ T_{g(Q,N_Q)}$$

• At position 
$$\overrightarrow{Y} = [Y_1, Y_2, \cdots, Y_Q] \in \prod_{i=1}^Q N_i$$

•  $S_Y$  is the set of tasks appearing before Y

▶ Dynamic programming: For all  $\overrightarrow{Y}$  and  $F \subseteq S_Y$  with  $|F| \leq K$ , denote by  $OPT(\overrightarrow{Y}||F)$  the minimum processing time at position  $\overrightarrow{Y}$  with F in the cache.

#### Multi-threaded Caching Problem

#### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Idea

$$T_{g(1,1)}$$
  $T_{g(1,2)}$   $T_{g(1,3)}$   $T_{g(1,Y_1)}$   $T_{g(1,N_1)}$ 

$$T_{g(i,1)}$$
  $T_{g(i,Y_i-1)}$   $T_{g(i,Y_i)}$   $T_{g(i,N_i)}$ 

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

- At position  $\overrightarrow{Y} = [Y_1, Y_2, \cdots, Y_Q] \in \prod_{i=1}^Q N_i$
- $S_Y$  is the set of tasks appearing before  $\overrightarrow{Y}$

▶ Dynamic programming: For all  $\overrightarrow{Y}$  and  $F \subseteq S_Y$  with  $|F| \leq K$ , denote by  $OPT(\overrightarrow{Y}||F)$  the minimum processing time at position  $\overrightarrow{Y}$  with F in the cache. Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Idea

$$T_{g(1,1)} \mid T_{g(1,2)} \mid T_{g(1,3)} \mid T_{g(1,Y_1)} \mid T_{g(1,N_1)}$$

$$T_{g(i,1)} \mid T_{g(i,Y_i-1)} \mid T_{g(i,Y_i)} \mid T_{g(i,N_i)}$$

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

• At position 
$$\overrightarrow{Y} = [Y_1, Y_2, \cdots, Y_Q] \in \prod_{i=1}^Q N_i$$

•  $S_Y$  is the set of tasks appearing before  $\vec{Y}$ 

▶ Dynamic programming: For all  $\overrightarrow{Y}$  and  $F \subseteq S_Y$  with  $|F| \leq K$ , denote by  $OPT(\overrightarrow{Y}||F)$  the minimum processing time at position  $\overrightarrow{Y}$  with F in the cache.

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Idea

$$T_{g(1,1)} \mid T_{g(1,2)} \mid T_{g(1,3)} \mid T_{g(1,Y_1)} \mid T_{g(1,N_1)}$$

$$T_{g(i,1)} \mid T_{g(i,Y_i-1)} \mid T_{g(i,\frac{Y_i}{2})} \mid T_{g(i,N_i)}$$

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

• At position 
$$\overrightarrow{Y} = [Y_1, Y_2, \cdots, Y_Q] \in \prod_{i=1}^Q N_i$$

- $S_Y$  is the set of tasks appearing before  $\overrightarrow{Y}$
- Dynamic programming:

For all  $\overrightarrow{Y}$  and  $F \subseteq S_Y$  with  $|F| \leq K$ , denote by  $OPT(\overrightarrow{Y}||F)$  the minimum processing time at position  $\overrightarrow{Y}$  with F in the cache.

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

$$T_{g(1,1)}$$
  $T_{g(1,2)}$   $T_{g(1,3)}$   $T_{g(1,Y_1)}$   $T_{g(1,N_1)}$ 

$$T_{g(i,1)} \mid T_{g(i,Y_i-1)} \mid T_{g(i,Y_i)} \mid T_{g(i,N_i)}$$

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

### How to calculate $OPT(\overrightarrow{Y}||F)$ ?

Suppose we have  $OPT(\overrightarrow{Z} || F')$  for all  $\overrightarrow{Z}$  before  $\overrightarrow{Y}$  and  $F' \subseteq S_Z$  with  $|F'| \leq K$ .

If we go backwards one step from position  $\overline{Y}$ , we have at most Q possibilities, say  $[Y_1, \dots, Y_Q] - [0, \dots, 1, \dots, 0]^i$ .

Assuming we go backwards one step at the  $i_{th}$  chain, arriving at position  $\vec{Z}$ , for all F' such that  $|F' \setminus F| \leq 1$ , we go forwards to calculate min $\{OPT(\vec{Y} || F')\}$ .

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

$$T_{g(1,1)} \mid T_{g(1,2)} \mid T_{g(1,3)} \mid T_{g(1,Y_1)} \mid T_{g(1,N_1)}$$

$$T_{g(i,1)} \mid T_{g(i,Y_i-1)} \mid T_{g(i,Y_i)} \mid T_{g(i,N_i)}$$

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

How to calculate  $OPT(\overrightarrow{Y}||F)$ ? Suppose we have  $OPT(\overrightarrow{Z}||F')$  for all  $\overrightarrow{Z}$  before  $\overrightarrow{Y}$  and  $F' \subseteq S_Z$  with  $|F'| \leq K$ .

If we go backwards one step from position Y, we have at most Q possibilities, say  $[Y_1, \dots, Y_Q] - [0, \dots, 1, \dots, 0]^i$ . Assuming we go backwards one step at the  $i_{th}$  chain, arriving at position  $\vec{Z}$ , for all F' such that  $|F' \setminus F| \leq 1$ , we go forwards to calculate min $\{OPT(\vec{Y} || F')\}$ .

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

$$T_{g(1,1)} \mid T_{g(1,2)} \mid T_{g(1,3)} \mid T_{g(1,Y_1)} \mid T_{g(1,N_1)}$$

$$T_{g(i,1)} \mid T_{g(i,Y_i-1)} \mid T_{g(i,Y_i)} \mid T_{g(i,N_i)}$$

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

How to calculate  $OPT(\overrightarrow{Y} || F)$ ? Suppose we have  $OPT(\overrightarrow{Z} || F')$  for all  $\overrightarrow{Z}$  before  $\overrightarrow{Y}$  and  $F' \subseteq S_Z$  with  $|F'| \leq K$ . If we go backwards one step from position  $\overrightarrow{Y}$ , we have at most Q possibilities, say  $[Y_1, \dots, Y_Q] - [0, \dots, 1, \dots, 0]^i$ . Assuming we go backwards one step at the  $i_{th}$  chain, arriving at position  $\overrightarrow{Z}$ , for all F' such that  $|F' \setminus F| \leq 1$ , we go forwards to calculate min{ $OPT(\overrightarrow{Y} || F')$ }.

#### Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...
## Algorithm for Multi-threaded Caching Problem

$$T_{g(1,1)} \mid T_{g(1,2)} \mid T_{g(1,3)} \mid T_{g(1,Y_1)} \mid T_{g(1,N_1)}$$

$$T_{g(i,1)} \mid T_{g(i, \mathbf{Y}_i - 1)} \mid T_{g(i, Y_i)} \mid T_{g(i, N_i)}$$

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

How to calculate  $OPT(\overrightarrow{Y} || F)$ ? Suppose we have  $OPT(\overrightarrow{Z} || F')$  for all  $\overrightarrow{Z}$  before  $\overrightarrow{Y}$  and  $F' \subseteq S_Z$  with  $|F'| \leq K$ . If we go backwards one step from position  $\overrightarrow{Y}$ , we have at most Q possibilities, say  $[Y_1, \dots, Y_Q] - [0, \dots, 1, \dots, 0]^i$ . Assuming we go backwards one step at the  $i_{th}$  chain, arriving at position  $\overrightarrow{Z}$ , for all F' such that  $|F' \setminus F| \leq 1$ , we go forwards to calculate min $\{OPT(\overrightarrow{Y} || F')\}$ . Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

$$T_{g(1,1)} \mid T_{g(1,2)} \mid T_{g(1,3)} \mid T_{g(1,Y_1)} \mid T_{g(1,N_1)}$$

$$T_{g(i,1)}$$
  $T_{g(i,Y_i-1)}$   $T_{g(i,Y_i)}$   $T_{g(i,N_i)}$ 

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

# In fact, we consider all the possibilities of the optimal solution $OPT(\overrightarrow{Y}||F)$ .

The total number of combinatorics is  $\prod_{i=1}^{Q} N_i \times {L \choose K}$ .

To calculate ever one of the function, we have Q choices in each iteration. In each iteration we consider all the set F' which is different from F at most one task, so we have at most L comparison

Exponential algorithm:

$$O(Q \times L \times \prod_{j=1}^{Q} N_j \times \begin{pmatrix} L \\ K \end{pmatrix})$$

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

$$T_{g(1,1)} \mid T_{g(1,2)} \mid T_{g(1,3)} \mid T_{g(1,Y_1)} \mid T_{g(1,N_1)}$$

$$T_{g(i,1)} \mid T_{g(i,Y_i-1)} \mid T_{g(i,Y_i)} \mid T_{g(i,N_i)}$$

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

## In fact, we consider all the possibilities of the optimal solution $OPT(\overrightarrow{Y} || F)$ . The total number of combinatorics is $\prod_{i=1}^{Q} N_i \times {L \choose K}$ .

To calculate ever one of the function, we have Q choices in each iteration. In each iteration we consider all the set F' which is different from F at most one task, so we have at most L comparison

Exponential algorithm:

$$O(Q \times L \times \prod_{j=1}^{Q} N_j \times \begin{pmatrix} L \\ K \end{pmatrix})$$

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

$$T_{g(1,1)} \mid T_{g(1,2)} \mid T_{g(1,3)} \mid T_{g(1,Y_1)} \mid T_{g(1,N_1)}$$

$$T_{g(i,1)} \mid T_{g(i,Y_i-1)} \mid T_{g(i,Y_i)} \mid T_{g(i,N_i)}$$

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

In fact, we consider all the possibilities of the optimal solution  $OPT(\overrightarrow{Y}||F)$ .

The total number of combinatorics is  $\prod_{j=1}^{Q} N_j \times {L \choose K}$ .

To calculate ever one of the function, we have Q choices in each iteration. In each iteration we consider all the set F' which is different from F at most one task, so we have at most L comparison

Exponential algorithm:

$$O(Q \times L \times \prod_{j=1}^{Q} N_j \times \binom{L}{K})$$

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

$$T_{g(1,1)} \mid T_{g(1,2)} \mid T_{g(1,3)} \mid T_{g(1,Y_1)} \mid T_{g(1,N_1)}$$

$$T_{g(i,1)} \mid T_{g(i,\underline{Y}_i-1)} \mid T_{g(i,Y_i)} \mid T_{g(i,N_i)}$$

$$T_{g(Q,1)} T_{g(Q,2)} T_{g(Q,3)} T_{g(Q,Y_Q)} T_{g(Q,N_Q)}$$

In fact, we consider all the possibilities of the optimal solution  $OPT(\overrightarrow{Y}||F)$ .

The total number of combinatorics is  $\prod_{j=1}^{Q} N_j \times {L \choose K}$ .

To calculate ever one of the function, we have Q choices in each iteration. In each iteration we consider all the set F' which is different from F at most one task, so we have at most L comparison

Exponential algorithm:

$$O(Q \times L \times \prod_{j=1}^{Q} N_j \times \binom{L}{K})$$

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Could we do better?

|               |   | TIME | Complexity |
|---------------|---|------|------------|
| Cost Model    | 1 |      |            |
| Fault Model   |   | 1    | ?          |
| General Model |   |      | NP-hard    |

- 1. for  $i \leftarrow 1$  to K
- 2. find the  $C_{max}$  with a cache of capacity one
- delete some tasks from the input
- 4. merge the results

### Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへの

### Could we do better?

|               | SIZE           | TIME           | Complexity |
|---------------|----------------|----------------|------------|
| Cost Model    | 1              | $\mathbb{Z}^+$ | ?          |
| Fault Model   | $\mathbb{Z}^+$ | 1              | ?          |
| General Model |                |                | NP-hard    |

- 1. for  $i \leftarrow 1$  to K
- 2. find the  $C_{max}$  with a cache of capacity one
- 3. delete some tasks from the input
- 4. merge the results

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Could we do better?

|               | SIZE           | TIME           | Complexity |
|---------------|----------------|----------------|------------|
| Cost Model    | 1              | $\mathbb{Z}^+$ | ?          |
| Fault Model   | $\mathbb{Z}^+$ | 1              | ?          |
| General Model | $\mathbb{Z}^+$ | $\mathbb{Z}^+$ | NP-hard    |

- 1. for  $i \leftarrow 1$  to K
- 2. find the  $C_{max}$  with a cache of capacity one
- 3. delete some tasks from the input
- 4. merge the results

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Could we do better?

|               | SIZE           | TIME           | Complexity |
|---------------|----------------|----------------|------------|
| Cost Model    | 1              | $\mathbb{Z}^+$ | ?          |
| Fault Model   | $\mathbb{Z}^+$ | 1              | ?          |
| General Model | $\mathbb{Z}^+$ | $\mathbb{Z}^+$ | NP-hard    |

- 1. for  $i \leftarrow 1$  to K
- 2. find the  $C_{max}$  with a cache of capacity one
- delete some tasks from the input
- 4. merge the results

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Could we do better?

|               | SIZE           | TIME           | Complexity |
|---------------|----------------|----------------|------------|
| Cost Model    | 1              | $\mathbb{Z}^+$ | ?          |
| Fault Model   | $\mathbb{Z}^+$ | 1              | ?          |
| General Model | $\mathbb{Z}^+$ | $\mathbb{Z}^+$ | NP-hard    |

- 1. for  $i \leftarrow 1$  to K
- 2. find the  $C_{max}$  with a cache of capacity one
- 3. delete some tasks from the input
- 4. merge the results

Multi-threaded Caching Problem

MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### ▶ input:

- $P_i \in \mathbb{Z}^+$ ,  $S_i = 1 (1 \le i \le L)$
- Cache of capacity ONE
- Two chains of requests

### Observation:

- How to save the processing time?
- ▶ An 'edge'!

### Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thank

Dynamic Programming works with complexity  $O(n^3)$ .

### ▶ input:

- $P_i \in \mathbb{Z}^+$ ,  $S_i = 1 (1 \le i \le L)$
- Cache of capacity ONE
- Two chains of requests
- Observation:
  - How to save the processing time?
  - ► An 'edge'

Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

Dynamic Programming works with complexity  $O(n^3)$ .

### ▶ input:

- $P_i \in \mathbb{Z}^+$ ,  $S_i = 1 (1 \le i \le L)$
- Cache of capacity ONE
- Two chains of requests
- Observation:
  - How to save the processing time?
  - An 'edge' !

Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

Dynamic Programming works with complexity  $O(n^3)$ .

### ▶ input:

- $P_i \in \mathbb{Z}^+$ ,  $S_i = 1 (1 \le i \le L)$
- Cache of capacity ONE
- Two chains of requests
- Observation:
  - How to save the processing time?
  - An 'edge' !



Dynamic Programming works with complexity  $O(n^3)$ .

### Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### ▶ input:

- $P_i \in \mathbb{Z}^+$ ,  $S_i = 1 (1 \le i \le L)$
- Cache of capacity ONE
- Two chains of requests
- Observation:
  - How to save the processing time?
  - An 'edge' !



Dynamic Programming works with complexity  $O(n^3)$ .

### Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

### Design an approximation algorithm

- To address the complexity of Multi-threaded Caching Problem.
- Extend the number of machine
- Instead of several chains, we consider DAG
- Online Version

### Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Design an approximation algorithm

### To address the complexity of Multi-threaded Caching Problem.

- Extend the number of machine
- Instead of several chains, we consider DAG
- Online Version

### Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Design an approximation algorithm
- To address the complexity of Multi-threaded Caching Problem.
- Extend the number of machine
- Instead of several chains, we consider DAG
- Online Version

### Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへの

- Design an approximation algorithm
- To address the complexity of Multi-threaded Caching Problem.
- Extend the number of machine
- Instead of several chains, we consider DAG
- Online Version

### Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hype Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Design an approximation algorithm
- To address the complexity of Multi-threaded Caching Problem.
- Extend the number of machine
- Instead of several chains, we consider DAG
- Online Version

### Multi-threaded Caching Problem

### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ...

Thanks

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへの

### MOAIS

#### outline

Practical Problem: Hyper Project

To simplify . . .

**Caching Problem** 

To Extend Caching Problem

Multi-threaded Caching Problem

Our Results for Special Case

To Be Continued ....

Thanks

# Merci !

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●