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Abstract

This paper is about a new framework for high perfor-
mance thread scheduling based on the work stealing prin-
ciple when processors may run at different speed. We
also take into account memory management problems. We
hope that such framework could help multi-threaded or
multi-core architects to rely on well founded mathematical
results to build appropriate hardware/software schedulers
that control the scheduling of threads.

Keywords: Scheduling algorithms, Work Stealing princi-
ple, Memory Management, Heterogeneity of chips.

1 Introduction and related work

In this paper we propose new insights into the problem of
concurrently scheduling threads through mainly the Work
Stealing (WS) technique which is one of the technique,
with Parallel Depth First (PDF) technique able to efficiently
manage fine-grained multithreaded programs. We investi-
gate a nice result of Bender and Rabin about the scheduling
of threads in an heterogeneous context, show the limits in
terms of (theoretical) performance and we propose to en-
hance the efficiency of the processor utilisation by keeping
the fastest processor working on the critical path of the ap-
plication. Then we provide a bound on the completion time
of our new algorithm.

To effectively exploit available parallelism, chip multi-
processor hardware must address contention for shared re-
sources [6, 5, 3] and also should take care about the schedul-

ing of threads. Our aim is to model the scheduling of pro-
cesses in order to isolate the main factors that impact the
performance of the chips.

Many parallel programming language and run-time sys-
tems use greedy1 thread scheduling principles to maximise
processor utilisation. For instance, the Parallel Depth First
(PDF) approaches [5, 3] have been proposed for cache shar-
ing as well as for Work Stealing (WS), a popular scheduler
technique that takes a more traditional approach. The WS’s
policy maintains a work queue for each processor and when
forking a new thread, this new thread is put on the top of
the local thread. When a thread completes, the processor
looks for its local queue to execute the next job, and when
the queue is empty, the processor tries to steal work from
the queue of another processor.

Parallel Depth First (PDF) [4] is another greedy schedul-
ing strategy based on the fact that important sequential pro-
grams have already been highly optimised on a single core
architecture by maintaining small working sets, by capital-
ising on good spatial and temporal reuses. In PDF, when
a processor completes a task, it is assigned the ready task
that the sequential program would have executed the earli-
est. Note also that [4, 9] indicate how to do this work online
without executing the sequential program, we mean online.
In a sense, PDF tends to co-schedule work in a way similar
to the sequential execution that is to say more favourable
for optimisation (cache reuse. . . ). Intuitively, the benefit of
using the PDF technique is that the spacial data locality is
preserved while WS tends to make ’anarchic’ memory ac-
cesses by making all the threads working concurrently to ac-

1In a greedy schedule, a ready job remains unscheduled only ifall pro-
cessors are already busy
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cess the memory without coordination, hence problem with
numerous cache misses.

The Critical Path Method, abbreviated CPM, is yet an-
other method for scheduling threads. CPM calculates the
longest path of planned threads to the end of the execution,
and the earliest and latest that each thread can start and fin-
ish without making the execution longer. These algorithms
try to shorten the longest path in the application graph by re-
moving communication requirements and mapping the ad-
jacent tasks into a cluster (this is called zeroing an edge).
This approach has received a lot of attention and a taxon-
omy of these techniques can be found in [7]. Our approach
is quite similar in the sense that we try to keep a processor
busy along a path of the task graph but not for the reason
of decreasing the communications but to ensure a fair data
locality property: we assimilate arrows on the task graph as
data dependencies and not communications.

All of the strategies (WS, PDF, CMP) rely on a model of
parallel computation. A program in a model is represented
as a directed acyclic graph and the representation is used for
the proofs of the bounds on the computational time. Section
2 returns to models of parallelism and the representation of
computation. Section 3 reminds the results of Rabin and
Bender [2] concerning the WS technique and we introduce
in section 4 new insights into the way to refine the bounds.
We consider an offline algorithm to schedule threads. Sec-
tion 5 introduces the problems and solutions to take into
account cache effects. Section 6 concludes the paper.

2 Representing a computation and models of
parallelism

Our scheduling algorithm is applicable to programming
language that supports fork-join constructs. The algorithm
assumes a shared memory programming model in which
parallel programs can be described in terms of threads. A
threadis a sequence of actions that are executed serially and
taken exactly one time-step (or one clock cycle). A thread
may fork any number of child threads and this number need
not be be known at compile time. The computation is view
as a directed acyclic graph or dag.

Let W1 represents thetotal work that is the total num-
ber of nodes in the dagG. Let W∞ represents thecritical
path lengthof the graph, that is, the number of nodes in
the longest chain inG. Complementary definitions can be
found in [4] for instance.

3 WS technique and the algorithm of Rabin
and Bender

In [2], Bender and Rabin consider how to execute par-
allel programs on a collection of heterogeneous processors.

They considerp processors labelled1, · · · , p where proces-
sor i has speedπi steps/time. They assume for the sake of
convenience thatπ1 ≥ π2 ≥ · · · ≥ πp and that the proces-

sor speeds do not change. Letπave =
P

n

i=1
πi

p
.

Bender and Rabin consider themaximum utilisation
scheduling policy. This notion maintains the following in-
variant. During each time interval in which there are exactly
i ready threads, the fastesti processors execute these tasks.
If there arei ≥ p ready threads, then all processors work.
Note that in order to maintain this invariant, the scheduling
policy must allow preemption.

The central theorem in [2] is the following:

Theorem:[2] Any maximum utilisation schedule has a
completion time

Tp ≤
W1

pπave

+

(

π2

π1

+
π3

π2

+ · · · +
πp

πp−1

)

W∞

pπave

≤
W1

pπave

+
p − 1

p

W∞

πave

4 How to consider the critical path?

4.1 Offline algorithm

In this section we consider that the computation graph is
known in advance. So, we introduce an offline scheduling
algorithm which is based on the WS principle. Our aim is
to replace theπave terms in the Bender and Rabin result by
a more favourable one, especially one which is not related
to the mean of speeds. Our main idea is to keep the fastest
processor busy on the critical path. For programs with inde-

pendent tasks,W∞ is small and the
p − 1

p

W∞

πave

do not influ-

ence the completion time but it remains still aπave term in
the equation of the completion time. Otherwise, if the task
graph is like a hackle, the critical path length may become
an influencing factor for the completion time. Our approach
is twofold: keeping the benefit of Bender and Rabin result
when the critical path length is ’small’ and keeping busy
the most powerful processors with the most heavy tasks as
much as possible.

We remains under the heterogeneous case as defined by
Bender and Rabin concerning the speed of processors for
instance but we need some complementary definitions. We
also work with the series-parallel graph model but we would
like to mention that our scheduling algorithm is also valid if
we consider ’general’ DAGs. However, we will see later
on that to tackle memory management problems, series-
parallel graphs are a requisite.

Nodes are now represented by a tuple
(name, weight, st, et) where name is the label of a
task,weight is the time duration of the task,st is the time
at which the task starts andet the time at which the task
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finishes. The Figure 4.1 introduces an example. Note that
if we know only the weight of the task at the beginning
of the algorithm and assuming that time starts at 0, a DFS
(Depth First Search) like algorithms allows us to label the
nodes for tuple values in a strait-forward way.

k, 3, 15, 18

g, 5, 10, 15

d, 5, 5, 10

c, 2, 3, 5

f, 2, 8, 10

e, 5, 3, 8

b, 1, 2, 3

j, 5, 10, 15

i, 4, 6, 10

h, 4, 2, 6

a, 2, 0, 2

Figure 1. The task graph augmented with in-
formation about task durations

4.2 Computation of paths of minimal
length

After labelling the nodes, the second step of the algo-
rithm is to compute ’all the critical paths’ of the graph. Each
(critical) path of maximal weight has a minimal time for
starting and a maximal time for finishing. The weight of a
path is the sum of weights for tasks that constitute the path.
We compute the connected path of maximal weight in the
graph in the range[n = 0, M = ∞]. This path has an
interval of execution of[m1, M1]. We continue the pro-
cess in order to compute the paths of maximal weight in
[m, m1] and in [M1, M ], recursively. We obtain a set of
pathsC1, C2, · · · and we store them in an array that give
also the processor that should run the tasks on the paths (re-
mind thatπ1 ≤ π2 ≤ · · · ≤ πp). The array also contains a
flag to indicate if a path is completed or not. For the exam-
ple of Figure 4.1, we get:

Path Finish? Proc

C1 false 1
C2 false 2
C3 false 3

with C1 = abefgk, C2 = hij, C3 = cd. Note that the
time duration of tasks on theC2 path is 13; the time duration
of tasks on theC3 path is 7; and the time duration of tasks
on theC1 path is 18;

4.3 Preemptive algorithm

Assuming that the previous array in shared among all
the threads, the scheduling algorithms starts by executing
the first free path on the fastest processor, the second free
path is executed on the ’second’ fastest processor and so on.

After this initialisation step, the scheduler enter to a per-
manent regime and a processor:

α: becomes idle because it has finished its ’job’ on a path;

β: must interrupt its work because it needs to wait for a
task to complete.

The protocol is then as follows for theα, β cases:

α: the processor looks at the array, marks the ’finish?’ field
with true and considers the first path which is either not
yet started or, if it has been started by a slower proces-
sor, it steals the work. A processor which has been
stolen by another one has the behaviour of a processor
that is idle (its job is just terminated);

β: the processor interrupts its work on its path. LetN

be the node requiring such synchronisation point. We
consider the paths belonging to the parents ofN and
not yet terminated.

If the paths have not yet been started, we start one of
them on the interrupted processor;

If these paths are currently executed on slowest pro-
cessors, we steal the work of the slowest until we
reach the nodeN , we stop the computation on
the stolen path by marking it as executed by an
infinitely slow processor and we restart the com-
putation after nodeN ;

If these paths are executed on fastest processors and
that there is no more slowest processors, we ask
to be notified when nodeN completes. During
the waiting step, the behaviour of the processor
is as it has finished its work. When the processor
receives the signal, it restarts its initial work and
freezes its current work by marking it as executed
by an infinitely slow processor.

Theorem: The above algorithm has a completion time :

Tp ≤

∑n

i=1
Wi + Si

∑p

i=1
πi

, for n > p;

Tp ≤

∑n

i=1
Wi + Si

∑n

i=1
πi

, for n ≤ p

whereSi is the starting time ofWi divided by the minimum
speed of the processors dealing with the parents of the first
node ofWi.
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Proof. By construction, the processor working atπi steps
per second is working on thei-th critical path as defined
above and when processori must wait for one parent it
makes a progress in the computation and it contributes for a
fraction ofWj , (j > i) at speedπi.

5 Offline Algorithm and cache effects

In this section we investigate the problems of schedul-
ing threads efficiently whereas controlling the cache misses.
Two orthogonal facts characterise the WS principle: theo-
retical bounds on the completion time can be derived and
these bounds show the potential of the method including
for practical cases (fork-join programming) but since the
method tends to activate concurrently all the threads with
no control of what they are doing concerning the memory,
there is no chance for regular memory access patterns (we
mean that a memory access is accomplished in a random
way provided by the memory controller) and thus we tend
to multiply the cache misses.

For that reason, the PDF technique has been studied in
the past in order to have concurrently executing threads
share a largely overlapping memory portion. The aim of
the PDF technique is to get good spatial and temporal reuse
as follows: when a core completes a task, it is assigned
the ready-to-execute task that the equivalent sequential pro-
gram would have executed the earliest. The underlying idea
is that we can count on sequential codes because they are
now optimised by compilers: code reordering (unfolding
loop), memory prefetching inside a loop, 128 bits register
use and many other techniques are automatically done and
increase the performance. However, there is no result, to
our knowledge, about how to adpat PDF to the heteroge-
neous case, hence our work to guaranty good results faced
to cache misses.

Paper [3] from Blelloch and Gibbons shows important
properties of PDF schedules regarding cache misses. In that
paper, authors compare the number of cache missesM1 for
running a computation on a single processor equipped of a
cache of sizeC1 to the total number of missesMp for the
same computation when usingp processors and a shared
cache of sizeCp. They demonstrate that for any compu-
tation, and with an appropriate greedy parallel schedule, if
Cp ≤ C1 + p.W∞ thenMp ≤ M1.

As quoted in the paper, ”this gives the perhaps surprising
result that for sufficiently parallel computations the shared
cache need only be an additive size larger than the single
processor cache” in order to guarantee no additional misses
for any computation. The key point to explain the result
is the choice of the schedule and we could add that it de-
termines the result. Note that thep.W∞ product is small
in practice becausep is small andW∞ is not of the same
magnitude of the input size but much smaller. Note also

that the result considers an ideal cache model which is a
fully associative cache and it uses an ideal replacement pol-
icy meaning that the evicted memory bloc is the candidate
memory block whose next access is infrequent in the future,
which is optimal as proved by Belardy2.

In [1] Acar, Blelloch and Blumofe show that the bound
compares favourably to WS where cache size must be at
leastC1.p.W∞ to guaranteeM1 misses.

A standard sequential execution corresponds to a partic-
ular depth-first schedule of the dependence graph; Blelloch
and Gibbons call it a 1DF-schedule. Then they consider
parallel schedules that are prioritised based on a given se-
quential schedule i.e. if there are multiple tasks ready to
execute at a given time step, the ”schedule will preferen-
tially pick the tasks that are earliest in the sequential sched-
ule”. A parallel schedule based on a 1DF-schedule is called
a PDF-schedule [4].

In [4] authors show how to maintain a PDF schedule
online for various types of computations, in particular for
computations with parallel loops or fork-join construct. The
main fact to succeed is based on properties of DAG that we
use that must be planar graphs. Series-parallel graphs are
planar graphs and this fact may guaranty to get theoretical
results. Another property of PDF schedule to transform it
such that it behaves well online is based on the fact that
with series-parallel graphs we are able to maintain priori-
ties on the ready nodes without knowing all the graph: “the
children of any nodev have the same (1DF-schedule) pri-
ority asv relative to other ready nodes; thus, they can be
substituted in forv in any sequance of ready nodes ordered
by their 1DF-numbers and the sequance remains ordered by
1DF-numbers” [4].

All these reasons explain why we concentrate our atten-
tion on series-parallel graphs.

An intuitive idea for achieving good data locality with
WS is to execute on the same processors nodes that are close
in the computation graph. Following this idea, each thread
can be given an affinity for a process and when a process
obtains work, it gives priority to threads with affinity for it.
To enable this, in addition to the (Path, Finish, Proc) infor-
mation of our scheduler, we add another array containing
for each task a first-in-first-out (FIFO) queue of tasks that
have affinity for. We also add a field, protected by a mutex,
specifying if the task is completed or not. Let us call this
data structure amailbox. We are now faced to the following
problems:

How to choose the affinity threads of a given thread?

How to schedule threadsequipped with this new infor-
mation?

What about the completion time?

2Refer to http://www.research.ibm.com/journal/sj/052/belady.pdf
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What about the cache misses?

5.1 How to choose affinity threads

The computation of the affinity list of a task is simply
the ancestors of the task in the task graph until the root. We
assume that we deal with series-parallel graphs such that we
have only a unique common ancestor for each task which is
the root of the graph.
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Figure 2. The task graph where nodes are
numbered in order of a 1DF-schedule
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Figure 3. The task graph labelled as a PDF-
schedule

5.2 How to schedule threads

In our scheduling algorithm taking into account the crit-
ical paths, we have distinguished two cases when a proces-
sor interrupts its work because it needs to wait for a task to

complete. Only theα case is under concern here because
for theβ case we have already a criteria that requires to ex-
amine a parent of the ’faulty’ node. A parent is necessary
in the affinity list, so we have nothing to do.

In the α case, we modify the protocol as follows. The
idle processor looks at the main array, marks the ’finish?’
field with true and begins by considering the first path which
is not yet started, and second, if there is no free path, it con-
siders a slower processor:it steals the work of the processor
with more tasks that remains to accomplish in the affinity list
of all tasks on active paths. In case of tie, it behaves like the
initial algorithm: it steals on the processor with the speed
that is immediately inferior to itself. A processor which has
been stolen by another one has the behaviour of a processor
that is idle (its job is just terminated);

5.3 Completion time of the new frame-
work

The overhead introduced by this new technique is linked
with the management of the affinity lists. Since the graph is
known in advance, we can pre-compute the affinity lists and
store them in our data structure. The sink node of the task
graph has no affinity list since when it terminates we have
nothing to do. In the worst case, the parent(s) of the sink
node have all the critical paths to consider in the affinity
list.

For instance, on Figure 4.1 the nearest common ances-
tor for nodeg is the root (because when nodeg completes,
d, c, f, e, b has been completed) and only the citical path on
the right of the Figure may not yet finished. For nodej,
the nearest common ancestor is also the root, so the affin-
ity list for nodej is the critical paths starting from the root
(here the two paths at the left of the Figure). The number
of entries in the affinity list of each node is bounded by the
number of critical paths in the graph.

5.4 Number of cache misses for the new
framework

Let us remind some key points about schedules accord-
ing to Blelloch [3, 1]. First, remind that we use series-
parallel graphs. Second, such graphs have interesting struc-
tural properties. Let’s start by terminology. We call a node
in the task graph with out-degree of 2 afork node. We call
a node that has an in-degree of 2 ajoin nodeand we parti-
tion all the nodes that have in-degree 1 into two categories:
a nomadic nodehas a parent that is a fork node and asta-
ble nodehas a parent that has out-degree 1. the root node
do not belong to any of these categories but it never minds.
The series parallel graphs have the following properties in
the context of our work stealing algorithm:

1. The least common ancestor of any two nodes is unique;
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2. The greatest common descendant of any two nodes is
unique;

3. Lets be a fork node, then no child ofs is a join node;

Let us consider one critical pathCi. Assume that during
its execution there is no stolen node and that the number of
cache misses isMi for a cache size ofCS blocks. There-
fore, the number of extra cache misses is:

CM = A −

n
∑

i=1

(Wi) + St

whereA is the number of edges in the task graph andSt

is the number of steals.

6 Conclusion

This paper introduces new insights into the problem
of scheduling tasks according to the Work Stealing (WS)
principle for heterogeneous multi-core architectures. We
have shown that compromises have to be done if we want
also good performances for memory management. WS do
not preserve data locality by nature so we have proposed
to schedule tasks according to the different critical paths
(ranked by their time durations) and also, to force active
processors to execute tasks that are close in the task graph
by the mean of the affinity lists.

The experimental evaluation of the indroduced frame-
work is difficult due to the lack of workload models or mul-
tiple execution traces for fork-join graphs which is our priv-
ileged model for computation. We could use the work of
Lubin and Feitelson [8] to generate task graphs but this pa-
per considers coarse grain tasks, typically tasks submitted
to job schedulers of any production system. In our case,
the target architecture is multi-core processors and not dis-
tributed multi-processors systems or grid systems. Another
idea would have been to take random tasks generated ac-
cording to a fork-join principle but in this case we are not
sure that such graphs represent the realm of programs that
we effectively run on current technologies.

Gibbons and all in [5] use 3 benchmarks for evaluating
the Work Stealing and the Parallel Depth First frameworks:
LU factorisation, hash join and mergesort. They count on
online algorithms and they do not consider static graphs that
are central in our work. These benchmarks are not yet ap-
propriate for evaluating our work.

The Kaapi3 framework relies on a variant of series-
parallel graphs and it offers examples which are pro-
grammed in C++ augmented by special primitives for creat-
ing, synchronising threads. Kaapi means Kernel for Adap-
tative, Asynchronous Parallel and Interactive programming.

3See: http://kaapi.gforge.inria.fr/

It allows to execute multithreaded computation with data
flow synchronization between threads. The library is able
to schedule fine/medium size grain program on distributed
machine. The data flow graph is dynamic (unfold at run-
time). Target architectures are clusters of SMP machines
and more interesting for our purpose: it is based on work-
stealing algorithms. Even if Kaapi examples can serve as
workloads, it remains that we also have to observe the mem-
ory performance. It can be accomplished with the Papi4 tool
that can observe the performance counters of modern chips
but we are not sure that the current version of Papi supports
multi-core or SMP architectures in a coherent way.

So, future work will consist in extending our framework
towards the online paradigm and also to find workload gen-
erators in order to conduct simulation, for instance to esti-
mate the size of affinity lists in real applications.
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